Local and whole‐body SAR in UHF body imaging: Implications for SAR matrix compression
Purpose Transmit arrays for body imaging have characteristics of both volume and local transmit coils. This study evaluates two specific absorption rate (SAR) aspects, local and whole‐body SAR, of arrays for body imaging at 7 T and also for a 3 T birdcage. Methods Simulations were performed for six...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2025-02, Vol.93 (2), p.842-849 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 849 |
---|---|
container_issue | 2 |
container_start_page | 842 |
container_title | Magnetic resonance in medicine |
container_volume | 93 |
creator | Fiedler, Thomas M. Ladd, Mark E. Orzada, Stephan |
description | Purpose
Transmit arrays for body imaging have characteristics of both volume and local transmit coils. This study evaluates two specific absorption rate (SAR) aspects, local and whole‐body SAR, of arrays for body imaging at 7 T and also for a 3 T birdcage.
Methods
Simulations were performed for six antenna arrays at 7 T and one 3 T birdcage. Local SAR matrices and the whole‐body SAR matrix were computed and evaluated with random shims. A set of reduced local SAR matrices was determined by removing all matrices dominated by the whole‐body SAR matrix.
Results
The results indicate that all RF transmit coils for body imaging in this study are constrained by the local SAR limit. The ratio between local and whole‐body SAR is nevertheless smaller for arrays with large FOV, as these arrays also expose a larger part of the human body.
By using the whole‐body SAR matrix, the number of local SAR matrices can be reduced (e.g., 33.3% matrices remained for an 8‐channel local array and 89.7% for a 30‐channel remote array; 12.1% for the 3 T birdcage).
Conclusion
For transmit antenna arrays used for body imaging at 7 T as well as for the 3 T birdcage, all evaluated cases show that the local SAR limit was reached before reaching the whole‐body SAR limit. Nevertheless, the whole‐body SAR matrix can be used to reduce the number of local SAR matrices, which is important to reduce memory and computing time for a virtual observation points (VOP) compression. This step can be included as a pre‐compression prior to a VOP compression. |
doi_str_mv | 10.1002/mrm.30306 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11604848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107162458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3346-8f9e0c2d277d239f09ea75988f01f84aea05a95f6485409821e8333052f511d03</originalsourceid><addsrcrecordid>eNp1kctOGzEUhi3UqgTooi-ALHVTFhOObzM2GxShcpGCKnERS8vM2MFoZhzspDQ7HoFn5EnqJBTRSl0dHZ1Pn_6jH6EvBIYEgO53sRsyYFBuoAERlBZUKP4BDaDiUDCi-CbaSukeAJSq-Ce0yRQDUkk-QDfjUJsWm77Bj3ehtS9Pz7ehWeDL0QX2Pb4-Pcar3Xdm4vvJAT7rpq2vzcyHPmEX4orszCz6X7gO3TTalPJtB310pk328-vcRtfH36-OTovxj5Ozo9G4qBnjZSGdslDThlZVQ5lyoKyphJLSAXGSG2tAGCVcyaXgoCQlVjLGQFAnCGmAbaPDtXc6v-1sU9t-Fk2rpzEHjgsdjNd_X3p_pyfhpyakBC65zIZvr4YYHuY2zXTnU23b1vQ2zJNmBCpSUi6W6Nd_0Pswj33-L1OMSU5LVmZqb03VMaQUrXtLQ0Av-9K5L73qK7O77-O_kX8KysD-Gnj0rV3836TPL87Xyt_qPp5G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133842636</pqid></control><display><type>article</type><title>Local and whole‐body SAR in UHF body imaging: Implications for SAR matrix compression</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Fiedler, Thomas M. ; Ladd, Mark E. ; Orzada, Stephan</creator><creatorcontrib>Fiedler, Thomas M. ; Ladd, Mark E. ; Orzada, Stephan</creatorcontrib><description>Purpose
Transmit arrays for body imaging have characteristics of both volume and local transmit coils. This study evaluates two specific absorption rate (SAR) aspects, local and whole‐body SAR, of arrays for body imaging at 7 T and also for a 3 T birdcage.
Methods
Simulations were performed for six antenna arrays at 7 T and one 3 T birdcage. Local SAR matrices and the whole‐body SAR matrix were computed and evaluated with random shims. A set of reduced local SAR matrices was determined by removing all matrices dominated by the whole‐body SAR matrix.
Results
The results indicate that all RF transmit coils for body imaging in this study are constrained by the local SAR limit. The ratio between local and whole‐body SAR is nevertheless smaller for arrays with large FOV, as these arrays also expose a larger part of the human body.
By using the whole‐body SAR matrix, the number of local SAR matrices can be reduced (e.g., 33.3% matrices remained for an 8‐channel local array and 89.7% for a 30‐channel remote array; 12.1% for the 3 T birdcage).
Conclusion
For transmit antenna arrays used for body imaging at 7 T as well as for the 3 T birdcage, all evaluated cases show that the local SAR limit was reached before reaching the whole‐body SAR limit. Nevertheless, the whole‐body SAR matrix can be used to reduce the number of local SAR matrices, which is important to reduce memory and computing time for a virtual observation points (VOP) compression. This step can be included as a pre‐compression prior to a VOP compression.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.30306</identifier><identifier>PMID: 39301784</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Antenna arrays ; Antennas ; Arrays ; Coils ; Compression ; Computer Processing and Modeling ; Computer Simulation ; Computing time ; Data Compression - methods ; Equipment Design ; Humans ; Image Enhancement - methods ; Imaging ; local SAR ; Magnetic Resonance Imaging - methods ; Phantoms, Imaging ; Reproducibility of Results ; Sensitivity and Specificity ; Technical Note ; UHF body imaging ; Virtual memory systems ; VOPs ; Whole Body Imaging ; whole‐body SAR</subject><ispartof>Magnetic resonance in medicine, 2025-02, Vol.93 (2), p.842-849</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3346-8f9e0c2d277d239f09ea75988f01f84aea05a95f6485409821e8333052f511d03</cites><orcidid>0000-0001-9784-4354 ; 0000-0002-1556-375X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.30306$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.30306$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39301784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiedler, Thomas M.</creatorcontrib><creatorcontrib>Ladd, Mark E.</creatorcontrib><creatorcontrib>Orzada, Stephan</creatorcontrib><title>Local and whole‐body SAR in UHF body imaging: Implications for SAR matrix compression</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
Transmit arrays for body imaging have characteristics of both volume and local transmit coils. This study evaluates two specific absorption rate (SAR) aspects, local and whole‐body SAR, of arrays for body imaging at 7 T and also for a 3 T birdcage.
Methods
Simulations were performed for six antenna arrays at 7 T and one 3 T birdcage. Local SAR matrices and the whole‐body SAR matrix were computed and evaluated with random shims. A set of reduced local SAR matrices was determined by removing all matrices dominated by the whole‐body SAR matrix.
Results
The results indicate that all RF transmit coils for body imaging in this study are constrained by the local SAR limit. The ratio between local and whole‐body SAR is nevertheless smaller for arrays with large FOV, as these arrays also expose a larger part of the human body.
By using the whole‐body SAR matrix, the number of local SAR matrices can be reduced (e.g., 33.3% matrices remained for an 8‐channel local array and 89.7% for a 30‐channel remote array; 12.1% for the 3 T birdcage).
Conclusion
For transmit antenna arrays used for body imaging at 7 T as well as for the 3 T birdcage, all evaluated cases show that the local SAR limit was reached before reaching the whole‐body SAR limit. Nevertheless, the whole‐body SAR matrix can be used to reduce the number of local SAR matrices, which is important to reduce memory and computing time for a virtual observation points (VOP) compression. This step can be included as a pre‐compression prior to a VOP compression.</description><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Arrays</subject><subject>Coils</subject><subject>Compression</subject><subject>Computer Processing and Modeling</subject><subject>Computer Simulation</subject><subject>Computing time</subject><subject>Data Compression - methods</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Imaging</subject><subject>local SAR</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Phantoms, Imaging</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Technical Note</subject><subject>UHF body imaging</subject><subject>Virtual memory systems</subject><subject>VOPs</subject><subject>Whole Body Imaging</subject><subject>whole‐body SAR</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kctOGzEUhi3UqgTooi-ALHVTFhOObzM2GxShcpGCKnERS8vM2MFoZhzspDQ7HoFn5EnqJBTRSl0dHZ1Pn_6jH6EvBIYEgO53sRsyYFBuoAERlBZUKP4BDaDiUDCi-CbaSukeAJSq-Ce0yRQDUkk-QDfjUJsWm77Bj3ehtS9Pz7ehWeDL0QX2Pb4-Pcar3Xdm4vvJAT7rpq2vzcyHPmEX4orszCz6X7gO3TTalPJtB310pk328-vcRtfH36-OTovxj5Ozo9G4qBnjZSGdslDThlZVQ5lyoKyphJLSAXGSG2tAGCVcyaXgoCQlVjLGQFAnCGmAbaPDtXc6v-1sU9t-Fk2rpzEHjgsdjNd_X3p_pyfhpyakBC65zIZvr4YYHuY2zXTnU23b1vQ2zJNmBCpSUi6W6Nd_0Pswj33-L1OMSU5LVmZqb03VMaQUrXtLQ0Av-9K5L73qK7O77-O_kX8KysD-Gnj0rV3836TPL87Xyt_qPp5G</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Fiedler, Thomas M.</creator><creator>Ladd, Mark E.</creator><creator>Orzada, Stephan</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9784-4354</orcidid><orcidid>https://orcid.org/0000-0002-1556-375X</orcidid></search><sort><creationdate>202502</creationdate><title>Local and whole‐body SAR in UHF body imaging: Implications for SAR matrix compression</title><author>Fiedler, Thomas M. ; Ladd, Mark E. ; Orzada, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3346-8f9e0c2d277d239f09ea75988f01f84aea05a95f6485409821e8333052f511d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Arrays</topic><topic>Coils</topic><topic>Compression</topic><topic>Computer Processing and Modeling</topic><topic>Computer Simulation</topic><topic>Computing time</topic><topic>Data Compression - methods</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Imaging</topic><topic>local SAR</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Phantoms, Imaging</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Technical Note</topic><topic>UHF body imaging</topic><topic>Virtual memory systems</topic><topic>VOPs</topic><topic>Whole Body Imaging</topic><topic>whole‐body SAR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiedler, Thomas M.</creatorcontrib><creatorcontrib>Ladd, Mark E.</creatorcontrib><creatorcontrib>Orzada, Stephan</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiedler, Thomas M.</au><au>Ladd, Mark E.</au><au>Orzada, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local and whole‐body SAR in UHF body imaging: Implications for SAR matrix compression</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2025-02</date><risdate>2025</risdate><volume>93</volume><issue>2</issue><spage>842</spage><epage>849</epage><pages>842-849</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>Purpose
Transmit arrays for body imaging have characteristics of both volume and local transmit coils. This study evaluates two specific absorption rate (SAR) aspects, local and whole‐body SAR, of arrays for body imaging at 7 T and also for a 3 T birdcage.
Methods
Simulations were performed for six antenna arrays at 7 T and one 3 T birdcage. Local SAR matrices and the whole‐body SAR matrix were computed and evaluated with random shims. A set of reduced local SAR matrices was determined by removing all matrices dominated by the whole‐body SAR matrix.
Results
The results indicate that all RF transmit coils for body imaging in this study are constrained by the local SAR limit. The ratio between local and whole‐body SAR is nevertheless smaller for arrays with large FOV, as these arrays also expose a larger part of the human body.
By using the whole‐body SAR matrix, the number of local SAR matrices can be reduced (e.g., 33.3% matrices remained for an 8‐channel local array and 89.7% for a 30‐channel remote array; 12.1% for the 3 T birdcage).
Conclusion
For transmit antenna arrays used for body imaging at 7 T as well as for the 3 T birdcage, all evaluated cases show that the local SAR limit was reached before reaching the whole‐body SAR limit. Nevertheless, the whole‐body SAR matrix can be used to reduce the number of local SAR matrices, which is important to reduce memory and computing time for a virtual observation points (VOP) compression. This step can be included as a pre‐compression prior to a VOP compression.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39301784</pmid><doi>10.1002/mrm.30306</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9784-4354</orcidid><orcidid>https://orcid.org/0000-0002-1556-375X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2025-02, Vol.93 (2), p.842-849 |
issn | 0740-3194 1522-2594 1522-2594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11604848 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Antenna arrays Antennas Arrays Coils Compression Computer Processing and Modeling Computer Simulation Computing time Data Compression - methods Equipment Design Humans Image Enhancement - methods Imaging local SAR Magnetic Resonance Imaging - methods Phantoms, Imaging Reproducibility of Results Sensitivity and Specificity Technical Note UHF body imaging Virtual memory systems VOPs Whole Body Imaging whole‐body SAR |
title | Local and whole‐body SAR in UHF body imaging: Implications for SAR matrix compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20and%20whole%E2%80%90body%20SAR%20in%20UHF%20body%20imaging:%20Implications%20for%20SAR%20matrix%20compression&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Fiedler,%20Thomas%20M.&rft.date=2025-02&rft.volume=93&rft.issue=2&rft.spage=842&rft.epage=849&rft.pages=842-849&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.30306&rft_dat=%3Cproquest_pubme%3E3107162458%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133842636&rft_id=info:pmid/39301784&rfr_iscdi=true |