Local and whole‐body SAR in UHF body imaging: Implications for SAR matrix compression

Purpose Transmit arrays for body imaging have characteristics of both volume and local transmit coils. This study evaluates two specific absorption rate (SAR) aspects, local and whole‐body SAR, of arrays for body imaging at 7 T and also for a 3 T birdcage. Methods Simulations were performed for six...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2025-02, Vol.93 (2), p.842-849
Hauptverfasser: Fiedler, Thomas M., Ladd, Mark E., Orzada, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 849
container_issue 2
container_start_page 842
container_title Magnetic resonance in medicine
container_volume 93
creator Fiedler, Thomas M.
Ladd, Mark E.
Orzada, Stephan
description Purpose Transmit arrays for body imaging have characteristics of both volume and local transmit coils. This study evaluates two specific absorption rate (SAR) aspects, local and whole‐body SAR, of arrays for body imaging at 7 T and also for a 3 T birdcage. Methods Simulations were performed for six antenna arrays at 7 T and one 3 T birdcage. Local SAR matrices and the whole‐body SAR matrix were computed and evaluated with random shims. A set of reduced local SAR matrices was determined by removing all matrices dominated by the whole‐body SAR matrix. Results The results indicate that all RF transmit coils for body imaging in this study are constrained by the local SAR limit. The ratio between local and whole‐body SAR is nevertheless smaller for arrays with large FOV, as these arrays also expose a larger part of the human body. By using the whole‐body SAR matrix, the number of local SAR matrices can be reduced (e.g., 33.3% matrices remained for an 8‐channel local array and 89.7% for a 30‐channel remote array; 12.1% for the 3 T birdcage). Conclusion For transmit antenna arrays used for body imaging at 7 T as well as for the 3 T birdcage, all evaluated cases show that the local SAR limit was reached before reaching the whole‐body SAR limit. Nevertheless, the whole‐body SAR matrix can be used to reduce the number of local SAR matrices, which is important to reduce memory and computing time for a virtual observation points (VOP) compression. This step can be included as a pre‐compression prior to a VOP compression.
doi_str_mv 10.1002/mrm.30306
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11604848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107162458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3346-8f9e0c2d277d239f09ea75988f01f84aea05a95f6485409821e8333052f511d03</originalsourceid><addsrcrecordid>eNp1kctOGzEUhi3UqgTooi-ALHVTFhOObzM2GxShcpGCKnERS8vM2MFoZhzspDQ7HoFn5EnqJBTRSl0dHZ1Pn_6jH6EvBIYEgO53sRsyYFBuoAERlBZUKP4BDaDiUDCi-CbaSukeAJSq-Ce0yRQDUkk-QDfjUJsWm77Bj3ehtS9Pz7ehWeDL0QX2Pb4-Pcar3Xdm4vvJAT7rpq2vzcyHPmEX4orszCz6X7gO3TTalPJtB310pk328-vcRtfH36-OTovxj5Ozo9G4qBnjZSGdslDThlZVQ5lyoKyphJLSAXGSG2tAGCVcyaXgoCQlVjLGQFAnCGmAbaPDtXc6v-1sU9t-Fk2rpzEHjgsdjNd_X3p_pyfhpyakBC65zIZvr4YYHuY2zXTnU23b1vQ2zJNmBCpSUi6W6Nd_0Pswj33-L1OMSU5LVmZqb03VMaQUrXtLQ0Av-9K5L73qK7O77-O_kX8KysD-Gnj0rV3836TPL87Xyt_qPp5G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133842636</pqid></control><display><type>article</type><title>Local and whole‐body SAR in UHF body imaging: Implications for SAR matrix compression</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Fiedler, Thomas M. ; Ladd, Mark E. ; Orzada, Stephan</creator><creatorcontrib>Fiedler, Thomas M. ; Ladd, Mark E. ; Orzada, Stephan</creatorcontrib><description>Purpose Transmit arrays for body imaging have characteristics of both volume and local transmit coils. This study evaluates two specific absorption rate (SAR) aspects, local and whole‐body SAR, of arrays for body imaging at 7 T and also for a 3 T birdcage. Methods Simulations were performed for six antenna arrays at 7 T and one 3 T birdcage. Local SAR matrices and the whole‐body SAR matrix were computed and evaluated with random shims. A set of reduced local SAR matrices was determined by removing all matrices dominated by the whole‐body SAR matrix. Results The results indicate that all RF transmit coils for body imaging in this study are constrained by the local SAR limit. The ratio between local and whole‐body SAR is nevertheless smaller for arrays with large FOV, as these arrays also expose a larger part of the human body. By using the whole‐body SAR matrix, the number of local SAR matrices can be reduced (e.g., 33.3% matrices remained for an 8‐channel local array and 89.7% for a 30‐channel remote array; 12.1% for the 3 T birdcage). Conclusion For transmit antenna arrays used for body imaging at 7 T as well as for the 3 T birdcage, all evaluated cases show that the local SAR limit was reached before reaching the whole‐body SAR limit. Nevertheless, the whole‐body SAR matrix can be used to reduce the number of local SAR matrices, which is important to reduce memory and computing time for a virtual observation points (VOP) compression. This step can be included as a pre‐compression prior to a VOP compression.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.30306</identifier><identifier>PMID: 39301784</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Antenna arrays ; Antennas ; Arrays ; Coils ; Compression ; Computer Processing and Modeling ; Computer Simulation ; Computing time ; Data Compression - methods ; Equipment Design ; Humans ; Image Enhancement - methods ; Imaging ; local SAR ; Magnetic Resonance Imaging - methods ; Phantoms, Imaging ; Reproducibility of Results ; Sensitivity and Specificity ; Technical Note ; UHF body imaging ; Virtual memory systems ; VOPs ; Whole Body Imaging ; whole‐body SAR</subject><ispartof>Magnetic resonance in medicine, 2025-02, Vol.93 (2), p.842-849</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3346-8f9e0c2d277d239f09ea75988f01f84aea05a95f6485409821e8333052f511d03</cites><orcidid>0000-0001-9784-4354 ; 0000-0002-1556-375X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.30306$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.30306$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39301784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiedler, Thomas M.</creatorcontrib><creatorcontrib>Ladd, Mark E.</creatorcontrib><creatorcontrib>Orzada, Stephan</creatorcontrib><title>Local and whole‐body SAR in UHF body imaging: Implications for SAR matrix compression</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose Transmit arrays for body imaging have characteristics of both volume and local transmit coils. This study evaluates two specific absorption rate (SAR) aspects, local and whole‐body SAR, of arrays for body imaging at 7 T and also for a 3 T birdcage. Methods Simulations were performed for six antenna arrays at 7 T and one 3 T birdcage. Local SAR matrices and the whole‐body SAR matrix were computed and evaluated with random shims. A set of reduced local SAR matrices was determined by removing all matrices dominated by the whole‐body SAR matrix. Results The results indicate that all RF transmit coils for body imaging in this study are constrained by the local SAR limit. The ratio between local and whole‐body SAR is nevertheless smaller for arrays with large FOV, as these arrays also expose a larger part of the human body. By using the whole‐body SAR matrix, the number of local SAR matrices can be reduced (e.g., 33.3% matrices remained for an 8‐channel local array and 89.7% for a 30‐channel remote array; 12.1% for the 3 T birdcage). Conclusion For transmit antenna arrays used for body imaging at 7 T as well as for the 3 T birdcage, all evaluated cases show that the local SAR limit was reached before reaching the whole‐body SAR limit. Nevertheless, the whole‐body SAR matrix can be used to reduce the number of local SAR matrices, which is important to reduce memory and computing time for a virtual observation points (VOP) compression. This step can be included as a pre‐compression prior to a VOP compression.</description><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Arrays</subject><subject>Coils</subject><subject>Compression</subject><subject>Computer Processing and Modeling</subject><subject>Computer Simulation</subject><subject>Computing time</subject><subject>Data Compression - methods</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Imaging</subject><subject>local SAR</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Phantoms, Imaging</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Technical Note</subject><subject>UHF body imaging</subject><subject>Virtual memory systems</subject><subject>VOPs</subject><subject>Whole Body Imaging</subject><subject>whole‐body SAR</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kctOGzEUhi3UqgTooi-ALHVTFhOObzM2GxShcpGCKnERS8vM2MFoZhzspDQ7HoFn5EnqJBTRSl0dHZ1Pn_6jH6EvBIYEgO53sRsyYFBuoAERlBZUKP4BDaDiUDCi-CbaSukeAJSq-Ce0yRQDUkk-QDfjUJsWm77Bj3ehtS9Pz7ehWeDL0QX2Pb4-Pcar3Xdm4vvJAT7rpq2vzcyHPmEX4orszCz6X7gO3TTalPJtB310pk328-vcRtfH36-OTovxj5Ozo9G4qBnjZSGdslDThlZVQ5lyoKyphJLSAXGSG2tAGCVcyaXgoCQlVjLGQFAnCGmAbaPDtXc6v-1sU9t-Fk2rpzEHjgsdjNd_X3p_pyfhpyakBC65zIZvr4YYHuY2zXTnU23b1vQ2zJNmBCpSUi6W6Nd_0Pswj33-L1OMSU5LVmZqb03VMaQUrXtLQ0Av-9K5L73qK7O77-O_kX8KysD-Gnj0rV3836TPL87Xyt_qPp5G</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Fiedler, Thomas M.</creator><creator>Ladd, Mark E.</creator><creator>Orzada, Stephan</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9784-4354</orcidid><orcidid>https://orcid.org/0000-0002-1556-375X</orcidid></search><sort><creationdate>202502</creationdate><title>Local and whole‐body SAR in UHF body imaging: Implications for SAR matrix compression</title><author>Fiedler, Thomas M. ; Ladd, Mark E. ; Orzada, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3346-8f9e0c2d277d239f09ea75988f01f84aea05a95f6485409821e8333052f511d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Arrays</topic><topic>Coils</topic><topic>Compression</topic><topic>Computer Processing and Modeling</topic><topic>Computer Simulation</topic><topic>Computing time</topic><topic>Data Compression - methods</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Imaging</topic><topic>local SAR</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Phantoms, Imaging</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Technical Note</topic><topic>UHF body imaging</topic><topic>Virtual memory systems</topic><topic>VOPs</topic><topic>Whole Body Imaging</topic><topic>whole‐body SAR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiedler, Thomas M.</creatorcontrib><creatorcontrib>Ladd, Mark E.</creatorcontrib><creatorcontrib>Orzada, Stephan</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiedler, Thomas M.</au><au>Ladd, Mark E.</au><au>Orzada, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local and whole‐body SAR in UHF body imaging: Implications for SAR matrix compression</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2025-02</date><risdate>2025</risdate><volume>93</volume><issue>2</issue><spage>842</spage><epage>849</epage><pages>842-849</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>Purpose Transmit arrays for body imaging have characteristics of both volume and local transmit coils. This study evaluates two specific absorption rate (SAR) aspects, local and whole‐body SAR, of arrays for body imaging at 7 T and also for a 3 T birdcage. Methods Simulations were performed for six antenna arrays at 7 T and one 3 T birdcage. Local SAR matrices and the whole‐body SAR matrix were computed and evaluated with random shims. A set of reduced local SAR matrices was determined by removing all matrices dominated by the whole‐body SAR matrix. Results The results indicate that all RF transmit coils for body imaging in this study are constrained by the local SAR limit. The ratio between local and whole‐body SAR is nevertheless smaller for arrays with large FOV, as these arrays also expose a larger part of the human body. By using the whole‐body SAR matrix, the number of local SAR matrices can be reduced (e.g., 33.3% matrices remained for an 8‐channel local array and 89.7% for a 30‐channel remote array; 12.1% for the 3 T birdcage). Conclusion For transmit antenna arrays used for body imaging at 7 T as well as for the 3 T birdcage, all evaluated cases show that the local SAR limit was reached before reaching the whole‐body SAR limit. Nevertheless, the whole‐body SAR matrix can be used to reduce the number of local SAR matrices, which is important to reduce memory and computing time for a virtual observation points (VOP) compression. This step can be included as a pre‐compression prior to a VOP compression.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39301784</pmid><doi>10.1002/mrm.30306</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9784-4354</orcidid><orcidid>https://orcid.org/0000-0002-1556-375X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2025-02, Vol.93 (2), p.842-849
issn 0740-3194
1522-2594
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11604848
source MEDLINE; Wiley Online Library All Journals
subjects Antenna arrays
Antennas
Arrays
Coils
Compression
Computer Processing and Modeling
Computer Simulation
Computing time
Data Compression - methods
Equipment Design
Humans
Image Enhancement - methods
Imaging
local SAR
Magnetic Resonance Imaging - methods
Phantoms, Imaging
Reproducibility of Results
Sensitivity and Specificity
Technical Note
UHF body imaging
Virtual memory systems
VOPs
Whole Body Imaging
whole‐body SAR
title Local and whole‐body SAR in UHF body imaging: Implications for SAR matrix compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20and%20whole%E2%80%90body%20SAR%20in%20UHF%20body%20imaging:%20Implications%20for%20SAR%20matrix%20compression&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Fiedler,%20Thomas%20M.&rft.date=2025-02&rft.volume=93&rft.issue=2&rft.spage=842&rft.epage=849&rft.pages=842-849&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.30306&rft_dat=%3Cproquest_pubme%3E3107162458%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133842636&rft_id=info:pmid/39301784&rfr_iscdi=true