Fast 3D 31P B1+ mapping with a weighted stack of spiral trajectory at 7 T

Purpose Phosphorus MRS (31P MRS) enables noninvasive assessment of energy metabolism, yet its application is hindered by sensitivity limitations. To overcome this, often high magnetic fields are used, leading to challenges such as spatial B1+$$ {\mathrm{B}}_1^{+} $$ inhomogeneity and therefore the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2024-10, Vol.93 (2), p.481-489
Hauptverfasser: Widmaier, Mark Stephan, Kaiser, Antonia, Baup, Salomé, Wenz, Daniel, Pierzchała, Katarzyna, Xiao, Ying, Huang, Zhiwei, Jiang, Yun, Xin, Lijing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 2
container_start_page 481
container_title Magnetic resonance in medicine
container_volume 93
creator Widmaier, Mark Stephan
Kaiser, Antonia
Baup, Salomé
Wenz, Daniel
Pierzchała, Katarzyna
Xiao, Ying
Huang, Zhiwei
Jiang, Yun
Xin, Lijing
description Purpose Phosphorus MRS (31P MRS) enables noninvasive assessment of energy metabolism, yet its application is hindered by sensitivity limitations. To overcome this, often high magnetic fields are used, leading to challenges such as spatial B1+$$ {\mathrm{B}}_1^{+} $$ inhomogeneity and therefore the need for accurate flip‐angle determination in accelerated acquisitions with short TRs. In response to these challenges, we propose a novel short TR and look‐up table–based double‐angle method for fast 3D 31P B1+$$ {\mathrm{B}}_1^{+} $$ mapping (fDAM). Methods Our method incorporates 3D weighted stack‐of‐spiral gradient‐echo acquisitions and a frequency‐selective pulse to enable efficient B1+$$ {\mathrm{B}}_1^{+} $$ mapping based on the phosphocreatine signal at 7 T. Protocols were optimized using simulations and validated through phantom experiments. The method was validated in the human brain using a 31P 1Ch‐trasmit/32Ch‐receive coil and skeletal muscle using a birdcage 1H/31P volume coil. Results The results of fDAM were compared with the classical DAM. A good correlation (r = 0.95) was obtained between the two B1+$$ {\mathrm{B}}_1^{+} $$ maps. A 3D 31P B1+$$ {\mathrm{B}}_1^{+} $$ mapping in the human calf muscle was achieved in about 10:50 min using a birdcage volume coil, with a 20% extended coverage (number of voxels with SNR > 3) relative to that of the classical DAM (24 min). fDAM also enabled the first full‐brain coverage 31P 3D B1+$$ {\mathrm{B}}_1^{+} $$ mapping in approximately 10:15 min using a 1Ch‐transmit/32Ch‐receive coil. Conclusion fDAM is an efficient method for 31P 3D B1+$$ {\mathrm{B}}_1^{+} $$ mapping, showing promise for future applications in rapid 31P MRSI.
doi_str_mv 10.1002/mrm.30321
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11604843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MRM30321</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1811-29eabb03cbfb6d130bc1167901fb7b1bfcf81156552be552dfc9254f4ad5c9783</originalsourceid><addsrcrecordid>eNpVkMFOAjEQhhujEUQPvkHvZqHTdnfpySiIGiEag-em7bZQ3GU3u1XCzauv6ZO4gjHxMjPJ_PP9kx-hcyB9IIQOirroM8IoHKAuxJRGNBb8EHVJyknEQPAOOmmaFSFEiJQfow4TLGklooseJqoJmI0xgyd8DRe4UFXl1wu88WGJFd5Yv1gGm-EmKPOKS4ebytcqx6FWK2tCWW-xCjj9-vicn6Ijp_LGnv32HnqZ3MxHd9H08fZ-dDWNKhgCRFRYpTVhRjudZMCINgBJKgg4nWrQzrhWFidxTLVtS-aMoDF3XGWxEemQ9dDlnlu96cJmxq7bZ3JZ1b5Q9VaWysv_m7VfykX5LlsbwoectYTBnrDxud3-XQKRP3nKNk-5y1POnme7gX0DCCdpHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast 3D 31P B1+ mapping with a weighted stack of spiral trajectory at 7 T</title><source>Access via Wiley Online Library</source><creator>Widmaier, Mark Stephan ; Kaiser, Antonia ; Baup, Salomé ; Wenz, Daniel ; Pierzchała, Katarzyna ; Xiao, Ying ; Huang, Zhiwei ; Jiang, Yun ; Xin, Lijing</creator><creatorcontrib>Widmaier, Mark Stephan ; Kaiser, Antonia ; Baup, Salomé ; Wenz, Daniel ; Pierzchała, Katarzyna ; Xiao, Ying ; Huang, Zhiwei ; Jiang, Yun ; Xin, Lijing</creatorcontrib><description>Purpose Phosphorus MRS (31P MRS) enables noninvasive assessment of energy metabolism, yet its application is hindered by sensitivity limitations. To overcome this, often high magnetic fields are used, leading to challenges such as spatial B1+$$ {\mathrm{B}}_1^{+} $$ inhomogeneity and therefore the need for accurate flip‐angle determination in accelerated acquisitions with short TRs. In response to these challenges, we propose a novel short TR and look‐up table–based double‐angle method for fast 3D 31P B1+$$ {\mathrm{B}}_1^{+} $$ mapping (fDAM). Methods Our method incorporates 3D weighted stack‐of‐spiral gradient‐echo acquisitions and a frequency‐selective pulse to enable efficient B1+$$ {\mathrm{B}}_1^{+} $$ mapping based on the phosphocreatine signal at 7 T. Protocols were optimized using simulations and validated through phantom experiments. The method was validated in the human brain using a 31P 1Ch‐trasmit/32Ch‐receive coil and skeletal muscle using a birdcage 1H/31P volume coil. Results The results of fDAM were compared with the classical DAM. A good correlation (r = 0.95) was obtained between the two B1+$$ {\mathrm{B}}_1^{+} $$ maps. A 3D 31P B1+$$ {\mathrm{B}}_1^{+} $$ mapping in the human calf muscle was achieved in about 10:50 min using a birdcage volume coil, with a 20% extended coverage (number of voxels with SNR &gt; 3) relative to that of the classical DAM (24 min). fDAM also enabled the first full‐brain coverage 31P 3D B1+$$ {\mathrm{B}}_1^{+} $$ mapping in approximately 10:15 min using a 1Ch‐transmit/32Ch‐receive coil. Conclusion fDAM is an efficient method for 31P 3D B1+$$ {\mathrm{B}}_1^{+} $$ mapping, showing promise for future applications in rapid 31P MRSI.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.30321</identifier><identifier>PMID: 39365949</identifier><language>eng</language><publisher>Hoboken: John Wiley and Sons Inc</publisher><subject>31P MRS ; B1 mapping ; DAM ; fast DAM ; fDAM ; Phosphorus ; Spectroscopic Methodology ; Technical Note ; X‐Nuclei Imaging</subject><ispartof>Magnetic resonance in medicine, 2024-10, Vol.93 (2), p.481-489</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3216-7599 ; 0009-0000-3353-0305 ; 0000-0002-5450-6109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.30321$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.30321$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Widmaier, Mark Stephan</creatorcontrib><creatorcontrib>Kaiser, Antonia</creatorcontrib><creatorcontrib>Baup, Salomé</creatorcontrib><creatorcontrib>Wenz, Daniel</creatorcontrib><creatorcontrib>Pierzchała, Katarzyna</creatorcontrib><creatorcontrib>Xiao, Ying</creatorcontrib><creatorcontrib>Huang, Zhiwei</creatorcontrib><creatorcontrib>Jiang, Yun</creatorcontrib><creatorcontrib>Xin, Lijing</creatorcontrib><title>Fast 3D 31P B1+ mapping with a weighted stack of spiral trajectory at 7 T</title><title>Magnetic resonance in medicine</title><description>Purpose Phosphorus MRS (31P MRS) enables noninvasive assessment of energy metabolism, yet its application is hindered by sensitivity limitations. To overcome this, often high magnetic fields are used, leading to challenges such as spatial B1+$$ {\mathrm{B}}_1^{+} $$ inhomogeneity and therefore the need for accurate flip‐angle determination in accelerated acquisitions with short TRs. In response to these challenges, we propose a novel short TR and look‐up table–based double‐angle method for fast 3D 31P B1+$$ {\mathrm{B}}_1^{+} $$ mapping (fDAM). Methods Our method incorporates 3D weighted stack‐of‐spiral gradient‐echo acquisitions and a frequency‐selective pulse to enable efficient B1+$$ {\mathrm{B}}_1^{+} $$ mapping based on the phosphocreatine signal at 7 T. Protocols were optimized using simulations and validated through phantom experiments. The method was validated in the human brain using a 31P 1Ch‐trasmit/32Ch‐receive coil and skeletal muscle using a birdcage 1H/31P volume coil. Results The results of fDAM were compared with the classical DAM. A good correlation (r = 0.95) was obtained between the two B1+$$ {\mathrm{B}}_1^{+} $$ maps. A 3D 31P B1+$$ {\mathrm{B}}_1^{+} $$ mapping in the human calf muscle was achieved in about 10:50 min using a birdcage volume coil, with a 20% extended coverage (number of voxels with SNR &gt; 3) relative to that of the classical DAM (24 min). fDAM also enabled the first full‐brain coverage 31P 3D B1+$$ {\mathrm{B}}_1^{+} $$ mapping in approximately 10:15 min using a 1Ch‐transmit/32Ch‐receive coil. Conclusion fDAM is an efficient method for 31P 3D B1+$$ {\mathrm{B}}_1^{+} $$ mapping, showing promise for future applications in rapid 31P MRSI.</description><subject>31P MRS</subject><subject>B1 mapping</subject><subject>DAM</subject><subject>fast DAM</subject><subject>fDAM</subject><subject>Phosphorus</subject><subject>Spectroscopic Methodology</subject><subject>Technical Note</subject><subject>X‐Nuclei Imaging</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpVkMFOAjEQhhujEUQPvkHvZqHTdnfpySiIGiEag-em7bZQ3GU3u1XCzauv6ZO4gjHxMjPJ_PP9kx-hcyB9IIQOirroM8IoHKAuxJRGNBb8EHVJyknEQPAOOmmaFSFEiJQfow4TLGklooseJqoJmI0xgyd8DRe4UFXl1wu88WGJFd5Yv1gGm-EmKPOKS4ebytcqx6FWK2tCWW-xCjj9-vicn6Ijp_LGnv32HnqZ3MxHd9H08fZ-dDWNKhgCRFRYpTVhRjudZMCINgBJKgg4nWrQzrhWFidxTLVtS-aMoDF3XGWxEemQ9dDlnlu96cJmxq7bZ3JZ1b5Q9VaWysv_m7VfykX5LlsbwoectYTBnrDxud3-XQKRP3nKNk-5y1POnme7gX0DCCdpHw</recordid><startdate>20241004</startdate><enddate>20241004</enddate><creator>Widmaier, Mark Stephan</creator><creator>Kaiser, Antonia</creator><creator>Baup, Salomé</creator><creator>Wenz, Daniel</creator><creator>Pierzchała, Katarzyna</creator><creator>Xiao, Ying</creator><creator>Huang, Zhiwei</creator><creator>Jiang, Yun</creator><creator>Xin, Lijing</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3216-7599</orcidid><orcidid>https://orcid.org/0009-0000-3353-0305</orcidid><orcidid>https://orcid.org/0000-0002-5450-6109</orcidid></search><sort><creationdate>20241004</creationdate><title>Fast 3D 31P B1+ mapping with a weighted stack of spiral trajectory at 7 T</title><author>Widmaier, Mark Stephan ; Kaiser, Antonia ; Baup, Salomé ; Wenz, Daniel ; Pierzchała, Katarzyna ; Xiao, Ying ; Huang, Zhiwei ; Jiang, Yun ; Xin, Lijing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1811-29eabb03cbfb6d130bc1167901fb7b1bfcf81156552be552dfc9254f4ad5c9783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>31P MRS</topic><topic>B1 mapping</topic><topic>DAM</topic><topic>fast DAM</topic><topic>fDAM</topic><topic>Phosphorus</topic><topic>Spectroscopic Methodology</topic><topic>Technical Note</topic><topic>X‐Nuclei Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Widmaier, Mark Stephan</creatorcontrib><creatorcontrib>Kaiser, Antonia</creatorcontrib><creatorcontrib>Baup, Salomé</creatorcontrib><creatorcontrib>Wenz, Daniel</creatorcontrib><creatorcontrib>Pierzchała, Katarzyna</creatorcontrib><creatorcontrib>Xiao, Ying</creatorcontrib><creatorcontrib>Huang, Zhiwei</creatorcontrib><creatorcontrib>Jiang, Yun</creatorcontrib><creatorcontrib>Xin, Lijing</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Widmaier, Mark Stephan</au><au>Kaiser, Antonia</au><au>Baup, Salomé</au><au>Wenz, Daniel</au><au>Pierzchała, Katarzyna</au><au>Xiao, Ying</au><au>Huang, Zhiwei</au><au>Jiang, Yun</au><au>Xin, Lijing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast 3D 31P B1+ mapping with a weighted stack of spiral trajectory at 7 T</atitle><jtitle>Magnetic resonance in medicine</jtitle><date>2024-10-04</date><risdate>2024</risdate><volume>93</volume><issue>2</issue><spage>481</spage><epage>489</epage><pages>481-489</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose Phosphorus MRS (31P MRS) enables noninvasive assessment of energy metabolism, yet its application is hindered by sensitivity limitations. To overcome this, often high magnetic fields are used, leading to challenges such as spatial B1+$$ {\mathrm{B}}_1^{+} $$ inhomogeneity and therefore the need for accurate flip‐angle determination in accelerated acquisitions with short TRs. In response to these challenges, we propose a novel short TR and look‐up table–based double‐angle method for fast 3D 31P B1+$$ {\mathrm{B}}_1^{+} $$ mapping (fDAM). Methods Our method incorporates 3D weighted stack‐of‐spiral gradient‐echo acquisitions and a frequency‐selective pulse to enable efficient B1+$$ {\mathrm{B}}_1^{+} $$ mapping based on the phosphocreatine signal at 7 T. Protocols were optimized using simulations and validated through phantom experiments. The method was validated in the human brain using a 31P 1Ch‐trasmit/32Ch‐receive coil and skeletal muscle using a birdcage 1H/31P volume coil. Results The results of fDAM were compared with the classical DAM. A good correlation (r = 0.95) was obtained between the two B1+$$ {\mathrm{B}}_1^{+} $$ maps. A 3D 31P B1+$$ {\mathrm{B}}_1^{+} $$ mapping in the human calf muscle was achieved in about 10:50 min using a birdcage volume coil, with a 20% extended coverage (number of voxels with SNR &gt; 3) relative to that of the classical DAM (24 min). fDAM also enabled the first full‐brain coverage 31P 3D B1+$$ {\mathrm{B}}_1^{+} $$ mapping in approximately 10:15 min using a 1Ch‐transmit/32Ch‐receive coil. Conclusion fDAM is an efficient method for 31P 3D B1+$$ {\mathrm{B}}_1^{+} $$ mapping, showing promise for future applications in rapid 31P MRSI.</abstract><cop>Hoboken</cop><pub>John Wiley and Sons Inc</pub><pmid>39365949</pmid><doi>10.1002/mrm.30321</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3216-7599</orcidid><orcidid>https://orcid.org/0009-0000-3353-0305</orcidid><orcidid>https://orcid.org/0000-0002-5450-6109</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2024-10, Vol.93 (2), p.481-489
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11604843
source Access via Wiley Online Library
subjects 31P MRS
B1 mapping
DAM
fast DAM
fDAM
Phosphorus
Spectroscopic Methodology
Technical Note
X‐Nuclei Imaging
title Fast 3D 31P B1+ mapping with a weighted stack of spiral trajectory at 7 T
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%203D%2031P%20B1+%20mapping%20with%20a%20weighted%20stack%20of%20spiral%20trajectory%20at%207%E2%80%89T&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Widmaier,%20Mark%20Stephan&rft.date=2024-10-04&rft.volume=93&rft.issue=2&rft.spage=481&rft.epage=489&rft.pages=481-489&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.30321&rft_dat=%3Cwiley_pubme%3EMRM30321%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39365949&rfr_iscdi=true