H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe

The equilibrium of lipid metabolism is critical to sustaining human health. Metabolic disorders often result in a variety of cardiovascular illnesses, especially atherosclerosis. Atherosclerosis is characterized by complicated complications and high mortality. Cholesterol deposition and oxidative st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2024-12, Vol.16 (1), p.345-353
Hauptverfasser: Wang, Hui, Guo, Jingjing, Tiancong Xiu, Tang, Yue, Li, Ping, Zhang, Wei, Zhang, Wen, Tang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue 1
container_start_page 345
container_title Chemical science (Cambridge)
container_volume 16
creator Wang, Hui
Guo, Jingjing
Tiancong Xiu
Tang, Yue
Li, Ping
Zhang, Wei
Zhang, Wen
Tang, Bo
description The equilibrium of lipid metabolism is critical to sustaining human health. Metabolic disorders often result in a variety of cardiovascular illnesses, especially atherosclerosis. Atherosclerosis is characterized by complicated complications and high mortality. Cholesterol deposition and oxidative stress have been considered as critical mechanisms in the occurrence and progression of atherosclerosis, however, the relationship between oxidative stress and lipid accumulation remains a puzzle in foam cells during the early stages of atherosclerosis development. Hydrogen peroxide (H2O2) has been reported to participate in various signaling pathways associated with atherosclerotic diseases. Additionally, the excessive intake of oxidized low-density lipoprotein (ox-LDL) leads to cholesterol accumulation and viscosity increasing in foam cells. Therefore, it is critical to investigate the internalization and modification of ox-LDL by H2O2 in foam cells. Herein, we developed a near-infrared, synergistic dual-functional fluorescent probe capable of detecting H2O2 and viscosity simultaneously with high selectivity and sensitivity. Through in situ imaging of H2O2 and viscosity in vivo, we discovered that H2O2 accumulation leads to an increased intake of ox-LDL in the early stages of plaque formation. This finding establishes a new experimental approach and theoretical foundation for the diagnosis and treatment of atherosclerosis, as well as the development of new medications.
doi_str_mv 10.1039/d4sc05546b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11604047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146184034</sourcerecordid><originalsourceid>FETCH-LOGICAL-p238t-41262de37b56274d55d8668a39d818d760d2bd13295e77418b86a0595da7d80c3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhk1JoSHNpb9A0EsuTvVt-VRCkjaBpYHSns1Ymt0oyNJGspZsf0V_cr1NCLRzmBl4X575aJoPjJ4zKvpPThZLlZJ6fNMccypZq5Xoj157Tt81p6U80CWEYIp3x83vG37HCVhbpxpg9imSbU5Tmn3cEB9nzBGC__WspDVJT-3qarUoBCGHPYH5HnMqNhyyLyTjDiGgIzsPBEjZR8wbX2ZviasQ2nWN9sCCQL7dfifrUFPGYjFaPAwe8X3zdg2h4OlLPWl-frn-cXnTru6-3l5erNotF2ZuJeOaOxTdqDTvpFPKGa0NiN4ZZlynqeOjY4L3CrtOMjMaDVT1ykHnDLXipPn8zN3WcUK3bDBnCMM2-wnyfkjgh3-V6O-HTdoNjGkqqewWwtkLIafHimUeJr9cEgJETLUMgknac8Zkv1g__md9SPXw2b8uzYykQoo_h5mNgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146184034</pqid></control><display><type>article</type><title>H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Wang, Hui ; Guo, Jingjing ; Tiancong Xiu ; Tang, Yue ; Li, Ping ; Zhang, Wei ; Zhang, Wen ; Tang, Bo</creator><creatorcontrib>Wang, Hui ; Guo, Jingjing ; Tiancong Xiu ; Tang, Yue ; Li, Ping ; Zhang, Wei ; Zhang, Wen ; Tang, Bo</creatorcontrib><description>The equilibrium of lipid metabolism is critical to sustaining human health. Metabolic disorders often result in a variety of cardiovascular illnesses, especially atherosclerosis. Atherosclerosis is characterized by complicated complications and high mortality. Cholesterol deposition and oxidative stress have been considered as critical mechanisms in the occurrence and progression of atherosclerosis, however, the relationship between oxidative stress and lipid accumulation remains a puzzle in foam cells during the early stages of atherosclerosis development. Hydrogen peroxide (H2O2) has been reported to participate in various signaling pathways associated with atherosclerotic diseases. Additionally, the excessive intake of oxidized low-density lipoprotein (ox-LDL) leads to cholesterol accumulation and viscosity increasing in foam cells. Therefore, it is critical to investigate the internalization and modification of ox-LDL by H2O2 in foam cells. Herein, we developed a near-infrared, synergistic dual-functional fluorescent probe capable of detecting H2O2 and viscosity simultaneously with high selectivity and sensitivity. Through in situ imaging of H2O2 and viscosity in vivo, we discovered that H2O2 accumulation leads to an increased intake of ox-LDL in the early stages of plaque formation. This finding establishes a new experimental approach and theoretical foundation for the diagnosis and treatment of atherosclerosis, as well as the development of new medications.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc05546b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atherosclerosis ; Bioaccumulation ; Chemistry ; Cholesterol ; Fluorescent indicators ; Hydrogen peroxide ; Lipid metabolism ; Lipids ; Metabolic disorders ; Oxidative stress ; Viscosity</subject><ispartof>Chemical science (Cambridge), 2024-12, Vol.16 (1), p.345-353</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604047/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604047/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Guo, Jingjing</creatorcontrib><creatorcontrib>Tiancong Xiu</creatorcontrib><creatorcontrib>Tang, Yue</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><title>H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe</title><title>Chemical science (Cambridge)</title><description>The equilibrium of lipid metabolism is critical to sustaining human health. Metabolic disorders often result in a variety of cardiovascular illnesses, especially atherosclerosis. Atherosclerosis is characterized by complicated complications and high mortality. Cholesterol deposition and oxidative stress have been considered as critical mechanisms in the occurrence and progression of atherosclerosis, however, the relationship between oxidative stress and lipid accumulation remains a puzzle in foam cells during the early stages of atherosclerosis development. Hydrogen peroxide (H2O2) has been reported to participate in various signaling pathways associated with atherosclerotic diseases. Additionally, the excessive intake of oxidized low-density lipoprotein (ox-LDL) leads to cholesterol accumulation and viscosity increasing in foam cells. Therefore, it is critical to investigate the internalization and modification of ox-LDL by H2O2 in foam cells. Herein, we developed a near-infrared, synergistic dual-functional fluorescent probe capable of detecting H2O2 and viscosity simultaneously with high selectivity and sensitivity. Through in situ imaging of H2O2 and viscosity in vivo, we discovered that H2O2 accumulation leads to an increased intake of ox-LDL in the early stages of plaque formation. This finding establishes a new experimental approach and theoretical foundation for the diagnosis and treatment of atherosclerosis, as well as the development of new medications.</description><subject>Atherosclerosis</subject><subject>Bioaccumulation</subject><subject>Chemistry</subject><subject>Cholesterol</subject><subject>Fluorescent indicators</subject><subject>Hydrogen peroxide</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Metabolic disorders</subject><subject>Oxidative stress</subject><subject>Viscosity</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1r3DAQhk1JoSHNpb9A0EsuTvVt-VRCkjaBpYHSns1Ymt0oyNJGspZsf0V_cr1NCLRzmBl4X575aJoPjJ4zKvpPThZLlZJ6fNMccypZq5Xoj157Tt81p6U80CWEYIp3x83vG37HCVhbpxpg9imSbU5Tmn3cEB9nzBGC__WspDVJT-3qarUoBCGHPYH5HnMqNhyyLyTjDiGgIzsPBEjZR8wbX2ZviasQ2nWN9sCCQL7dfifrUFPGYjFaPAwe8X3zdg2h4OlLPWl-frn-cXnTru6-3l5erNotF2ZuJeOaOxTdqDTvpFPKGa0NiN4ZZlynqeOjY4L3CrtOMjMaDVT1ykHnDLXipPn8zN3WcUK3bDBnCMM2-wnyfkjgh3-V6O-HTdoNjGkqqewWwtkLIafHimUeJr9cEgJETLUMgknac8Zkv1g__md9SPXw2b8uzYykQoo_h5mNgw</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Wang, Hui</creator><creator>Guo, Jingjing</creator><creator>Tiancong Xiu</creator><creator>Tang, Yue</creator><creator>Li, Ping</creator><creator>Zhang, Wei</creator><creator>Zhang, Wen</creator><creator>Tang, Bo</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241218</creationdate><title>H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe</title><author>Wang, Hui ; Guo, Jingjing ; Tiancong Xiu ; Tang, Yue ; Li, Ping ; Zhang, Wei ; Zhang, Wen ; Tang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p238t-41262de37b56274d55d8668a39d818d760d2bd13295e77418b86a0595da7d80c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atherosclerosis</topic><topic>Bioaccumulation</topic><topic>Chemistry</topic><topic>Cholesterol</topic><topic>Fluorescent indicators</topic><topic>Hydrogen peroxide</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Metabolic disorders</topic><topic>Oxidative stress</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Guo, Jingjing</creatorcontrib><creatorcontrib>Tiancong Xiu</creatorcontrib><creatorcontrib>Tang, Yue</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui</au><au>Guo, Jingjing</au><au>Tiancong Xiu</au><au>Tang, Yue</au><au>Li, Ping</au><au>Zhang, Wei</au><au>Zhang, Wen</au><au>Tang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2024-12-18</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>345</spage><epage>353</epage><pages>345-353</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The equilibrium of lipid metabolism is critical to sustaining human health. Metabolic disorders often result in a variety of cardiovascular illnesses, especially atherosclerosis. Atherosclerosis is characterized by complicated complications and high mortality. Cholesterol deposition and oxidative stress have been considered as critical mechanisms in the occurrence and progression of atherosclerosis, however, the relationship between oxidative stress and lipid accumulation remains a puzzle in foam cells during the early stages of atherosclerosis development. Hydrogen peroxide (H2O2) has been reported to participate in various signaling pathways associated with atherosclerotic diseases. Additionally, the excessive intake of oxidized low-density lipoprotein (ox-LDL) leads to cholesterol accumulation and viscosity increasing in foam cells. Therefore, it is critical to investigate the internalization and modification of ox-LDL by H2O2 in foam cells. Herein, we developed a near-infrared, synergistic dual-functional fluorescent probe capable of detecting H2O2 and viscosity simultaneously with high selectivity and sensitivity. Through in situ imaging of H2O2 and viscosity in vivo, we discovered that H2O2 accumulation leads to an increased intake of ox-LDL in the early stages of plaque formation. This finding establishes a new experimental approach and theoretical foundation for the diagnosis and treatment of atherosclerosis, as well as the development of new medications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4sc05546b</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2024-12, Vol.16 (1), p.345-353
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11604047
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Atherosclerosis
Bioaccumulation
Chemistry
Cholesterol
Fluorescent indicators
Hydrogen peroxide
Lipid metabolism
Lipids
Metabolic disorders
Oxidative stress
Viscosity
title H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H2O2%20accumulation%20promoting%20internalization%20of%20ox-LDL%20in%20early%20atherosclerosis%20revealed%20via%20a%20synergistic%20dual-functional%20NIR%20fluorescence%20probe&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Wang,%20Hui&rft.date=2024-12-18&rft.volume=16&rft.issue=1&rft.spage=345&rft.epage=353&rft.pages=345-353&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc05546b&rft_dat=%3Cproquest_pubme%3E3146184034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146184034&rft_id=info:pmid/&rfr_iscdi=true