H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe
The equilibrium of lipid metabolism is critical to sustaining human health. Metabolic disorders often result in a variety of cardiovascular illnesses, especially atherosclerosis. Atherosclerosis is characterized by complicated complications and high mortality. Cholesterol deposition and oxidative st...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2024-12, Vol.16 (1), p.345-353 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 353 |
---|---|
container_issue | 1 |
container_start_page | 345 |
container_title | Chemical science (Cambridge) |
container_volume | 16 |
creator | Wang, Hui Guo, Jingjing Tiancong Xiu Tang, Yue Li, Ping Zhang, Wei Zhang, Wen Tang, Bo |
description | The equilibrium of lipid metabolism is critical to sustaining human health. Metabolic disorders often result in a variety of cardiovascular illnesses, especially atherosclerosis. Atherosclerosis is characterized by complicated complications and high mortality. Cholesterol deposition and oxidative stress have been considered as critical mechanisms in the occurrence and progression of atherosclerosis, however, the relationship between oxidative stress and lipid accumulation remains a puzzle in foam cells during the early stages of atherosclerosis development. Hydrogen peroxide (H2O2) has been reported to participate in various signaling pathways associated with atherosclerotic diseases. Additionally, the excessive intake of oxidized low-density lipoprotein (ox-LDL) leads to cholesterol accumulation and viscosity increasing in foam cells. Therefore, it is critical to investigate the internalization and modification of ox-LDL by H2O2 in foam cells. Herein, we developed a near-infrared, synergistic dual-functional fluorescent probe capable of detecting H2O2 and viscosity simultaneously with high selectivity and sensitivity. Through in situ imaging of H2O2 and viscosity in vivo, we discovered that H2O2 accumulation leads to an increased intake of ox-LDL in the early stages of plaque formation. This finding establishes a new experimental approach and theoretical foundation for the diagnosis and treatment of atherosclerosis, as well as the development of new medications. |
doi_str_mv | 10.1039/d4sc05546b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11604047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146184034</sourcerecordid><originalsourceid>FETCH-LOGICAL-p238t-41262de37b56274d55d8668a39d818d760d2bd13295e77418b86a0595da7d80c3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhk1JoSHNpb9A0EsuTvVt-VRCkjaBpYHSns1Ymt0oyNJGspZsf0V_cr1NCLRzmBl4X575aJoPjJ4zKvpPThZLlZJ6fNMccypZq5Xoj157Tt81p6U80CWEYIp3x83vG37HCVhbpxpg9imSbU5Tmn3cEB9nzBGC__WspDVJT-3qarUoBCGHPYH5HnMqNhyyLyTjDiGgIzsPBEjZR8wbX2ZviasQ2nWN9sCCQL7dfifrUFPGYjFaPAwe8X3zdg2h4OlLPWl-frn-cXnTru6-3l5erNotF2ZuJeOaOxTdqDTvpFPKGa0NiN4ZZlynqeOjY4L3CrtOMjMaDVT1ykHnDLXipPn8zN3WcUK3bDBnCMM2-wnyfkjgh3-V6O-HTdoNjGkqqewWwtkLIafHimUeJr9cEgJETLUMgknac8Zkv1g__md9SPXw2b8uzYykQoo_h5mNgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146184034</pqid></control><display><type>article</type><title>H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Wang, Hui ; Guo, Jingjing ; Tiancong Xiu ; Tang, Yue ; Li, Ping ; Zhang, Wei ; Zhang, Wen ; Tang, Bo</creator><creatorcontrib>Wang, Hui ; Guo, Jingjing ; Tiancong Xiu ; Tang, Yue ; Li, Ping ; Zhang, Wei ; Zhang, Wen ; Tang, Bo</creatorcontrib><description>The equilibrium of lipid metabolism is critical to sustaining human health. Metabolic disorders often result in a variety of cardiovascular illnesses, especially atherosclerosis. Atherosclerosis is characterized by complicated complications and high mortality. Cholesterol deposition and oxidative stress have been considered as critical mechanisms in the occurrence and progression of atherosclerosis, however, the relationship between oxidative stress and lipid accumulation remains a puzzle in foam cells during the early stages of atherosclerosis development. Hydrogen peroxide (H2O2) has been reported to participate in various signaling pathways associated with atherosclerotic diseases. Additionally, the excessive intake of oxidized low-density lipoprotein (ox-LDL) leads to cholesterol accumulation and viscosity increasing in foam cells. Therefore, it is critical to investigate the internalization and modification of ox-LDL by H2O2 in foam cells. Herein, we developed a near-infrared, synergistic dual-functional fluorescent probe capable of detecting H2O2 and viscosity simultaneously with high selectivity and sensitivity. Through in situ imaging of H2O2 and viscosity in vivo, we discovered that H2O2 accumulation leads to an increased intake of ox-LDL in the early stages of plaque formation. This finding establishes a new experimental approach and theoretical foundation for the diagnosis and treatment of atherosclerosis, as well as the development of new medications.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc05546b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atherosclerosis ; Bioaccumulation ; Chemistry ; Cholesterol ; Fluorescent indicators ; Hydrogen peroxide ; Lipid metabolism ; Lipids ; Metabolic disorders ; Oxidative stress ; Viscosity</subject><ispartof>Chemical science (Cambridge), 2024-12, Vol.16 (1), p.345-353</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604047/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604047/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Guo, Jingjing</creatorcontrib><creatorcontrib>Tiancong Xiu</creatorcontrib><creatorcontrib>Tang, Yue</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><title>H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe</title><title>Chemical science (Cambridge)</title><description>The equilibrium of lipid metabolism is critical to sustaining human health. Metabolic disorders often result in a variety of cardiovascular illnesses, especially atherosclerosis. Atherosclerosis is characterized by complicated complications and high mortality. Cholesterol deposition and oxidative stress have been considered as critical mechanisms in the occurrence and progression of atherosclerosis, however, the relationship between oxidative stress and lipid accumulation remains a puzzle in foam cells during the early stages of atherosclerosis development. Hydrogen peroxide (H2O2) has been reported to participate in various signaling pathways associated with atherosclerotic diseases. Additionally, the excessive intake of oxidized low-density lipoprotein (ox-LDL) leads to cholesterol accumulation and viscosity increasing in foam cells. Therefore, it is critical to investigate the internalization and modification of ox-LDL by H2O2 in foam cells. Herein, we developed a near-infrared, synergistic dual-functional fluorescent probe capable of detecting H2O2 and viscosity simultaneously with high selectivity and sensitivity. Through in situ imaging of H2O2 and viscosity in vivo, we discovered that H2O2 accumulation leads to an increased intake of ox-LDL in the early stages of plaque formation. This finding establishes a new experimental approach and theoretical foundation for the diagnosis and treatment of atherosclerosis, as well as the development of new medications.</description><subject>Atherosclerosis</subject><subject>Bioaccumulation</subject><subject>Chemistry</subject><subject>Cholesterol</subject><subject>Fluorescent indicators</subject><subject>Hydrogen peroxide</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Metabolic disorders</subject><subject>Oxidative stress</subject><subject>Viscosity</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1r3DAQhk1JoSHNpb9A0EsuTvVt-VRCkjaBpYHSns1Ymt0oyNJGspZsf0V_cr1NCLRzmBl4X575aJoPjJ4zKvpPThZLlZJ6fNMccypZq5Xoj157Tt81p6U80CWEYIp3x83vG37HCVhbpxpg9imSbU5Tmn3cEB9nzBGC__WspDVJT-3qarUoBCGHPYH5HnMqNhyyLyTjDiGgIzsPBEjZR8wbX2ZviasQ2nWN9sCCQL7dfifrUFPGYjFaPAwe8X3zdg2h4OlLPWl-frn-cXnTru6-3l5erNotF2ZuJeOaOxTdqDTvpFPKGa0NiN4ZZlynqeOjY4L3CrtOMjMaDVT1ykHnDLXipPn8zN3WcUK3bDBnCMM2-wnyfkjgh3-V6O-HTdoNjGkqqewWwtkLIafHimUeJr9cEgJETLUMgknac8Zkv1g__md9SPXw2b8uzYykQoo_h5mNgw</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Wang, Hui</creator><creator>Guo, Jingjing</creator><creator>Tiancong Xiu</creator><creator>Tang, Yue</creator><creator>Li, Ping</creator><creator>Zhang, Wei</creator><creator>Zhang, Wen</creator><creator>Tang, Bo</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241218</creationdate><title>H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe</title><author>Wang, Hui ; Guo, Jingjing ; Tiancong Xiu ; Tang, Yue ; Li, Ping ; Zhang, Wei ; Zhang, Wen ; Tang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p238t-41262de37b56274d55d8668a39d818d760d2bd13295e77418b86a0595da7d80c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atherosclerosis</topic><topic>Bioaccumulation</topic><topic>Chemistry</topic><topic>Cholesterol</topic><topic>Fluorescent indicators</topic><topic>Hydrogen peroxide</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Metabolic disorders</topic><topic>Oxidative stress</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Guo, Jingjing</creatorcontrib><creatorcontrib>Tiancong Xiu</creatorcontrib><creatorcontrib>Tang, Yue</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui</au><au>Guo, Jingjing</au><au>Tiancong Xiu</au><au>Tang, Yue</au><au>Li, Ping</au><au>Zhang, Wei</au><au>Zhang, Wen</au><au>Tang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2024-12-18</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>345</spage><epage>353</epage><pages>345-353</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The equilibrium of lipid metabolism is critical to sustaining human health. Metabolic disorders often result in a variety of cardiovascular illnesses, especially atherosclerosis. Atherosclerosis is characterized by complicated complications and high mortality. Cholesterol deposition and oxidative stress have been considered as critical mechanisms in the occurrence and progression of atherosclerosis, however, the relationship between oxidative stress and lipid accumulation remains a puzzle in foam cells during the early stages of atherosclerosis development. Hydrogen peroxide (H2O2) has been reported to participate in various signaling pathways associated with atherosclerotic diseases. Additionally, the excessive intake of oxidized low-density lipoprotein (ox-LDL) leads to cholesterol accumulation and viscosity increasing in foam cells. Therefore, it is critical to investigate the internalization and modification of ox-LDL by H2O2 in foam cells. Herein, we developed a near-infrared, synergistic dual-functional fluorescent probe capable of detecting H2O2 and viscosity simultaneously with high selectivity and sensitivity. Through in situ imaging of H2O2 and viscosity in vivo, we discovered that H2O2 accumulation leads to an increased intake of ox-LDL in the early stages of plaque formation. This finding establishes a new experimental approach and theoretical foundation for the diagnosis and treatment of atherosclerosis, as well as the development of new medications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4sc05546b</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2024-12, Vol.16 (1), p.345-353 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11604047 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Atherosclerosis Bioaccumulation Chemistry Cholesterol Fluorescent indicators Hydrogen peroxide Lipid metabolism Lipids Metabolic disorders Oxidative stress Viscosity |
title | H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H2O2%20accumulation%20promoting%20internalization%20of%20ox-LDL%20in%20early%20atherosclerosis%20revealed%20via%20a%20synergistic%20dual-functional%20NIR%20fluorescence%20probe&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Wang,%20Hui&rft.date=2024-12-18&rft.volume=16&rft.issue=1&rft.spage=345&rft.epage=353&rft.pages=345-353&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc05546b&rft_dat=%3Cproquest_pubme%3E3146184034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146184034&rft_id=info:pmid/&rfr_iscdi=true |