Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics

Dynamic or structurally induced ionization is a critical aspect of many physical, chemical, and biological processes. Molecular dynamics (MD) based simulation approaches, specifically constant pH MD methods, have been developed to simulate ionization states of molecules or proteins under experimenta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2024-11, Vol.20 (22), p.10010-10021
Hauptverfasser: Hong, Richard S., Alagbe, Busayo D., Mattei, Alessandra, Sheikh, Ahmad Y., Tuckerman, Mark E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10021
container_issue 22
container_start_page 10010
container_title Journal of chemical theory and computation
container_volume 20
creator Hong, Richard S.
Alagbe, Busayo D.
Mattei, Alessandra
Sheikh, Ahmad Y.
Tuckerman, Mark E.
description Dynamic or structurally induced ionization is a critical aspect of many physical, chemical, and biological processes. Molecular dynamics (MD) based simulation approaches, specifically constant pH MD methods, have been developed to simulate ionization states of molecules or proteins under experimentally or physiologically relevant conditions. While such approaches are now widely utilized to predict ionization sites of macromolecules or to study physical or biological phenomena, they are often computationally expensive and require long simulation times to converge. In this article, using the principles of adiabatic free energy dynamics, we introduce an efficient technique for performing constant pH MD simulations within the framework of the adiabatic free energy dynamics (AFED) approach. We call the new approach pH-AFED. We show that pH-AFED provides highly accurate predictions of protein residue pK a values, with a MUE of 0.5 pK a units when coupled with driven adiabatic free energy dynamics (d-AFED), while reducing the required simulation times by more than an order of magnitude. In addition, pH-AFED can be easily integrated into most constant pH MD codes or implementations and flexibly adapted to work in conjunction with enhanced sampling algorithms that target collective variables. We demonstrate that our approaches, with both pH-AFED standalone as well as pH-AFED combined with collective variable based enhanced sampling, provide promising predictive accuracy, with a MUE of 0.6 and 0.5 pK a units respectively, on a diverse range of proteins and enzymes, ranging up to 186 residues and 21 titratable sites. Lastly, we demonstrate how this approach can be utilized to understand the in vivo performance engineered antibodies for immunotherapy.
doi_str_mv 10.1021/acs.jctc.4c00704
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11603612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145834658</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-bc81e102560ff54769c68c2b0df801157fec23c1fccedd0037dc1b956418c34a3</originalsourceid><addsrcrecordid>eNp1kc2rEzEUxYMovmd170oCblw4NXfy0ZmVPGqf78EDXeg6ZO4kbWqb1GRGqH-9qf1ABTdJSH7n5B4OIS-BTYHV8M5gnq5xwKlAxmZMPCLXIEVbtapWjy9naK7Is5zXjHEuav6UXPFWApfQXpNvi7AyAW1PTejpwjmP3oaBfk629zj4GDKNjn7YB7P1SO9j8D_N4ZoOqxTH5YrOCzKYMFS7O3rTe9OVZ6S3yVq6CDYt92dxfk6eOLPJ9sVpn5Cvt4sv87vq4dPH-_nNQ2W4kEPVYQO2xJOKOSfFTLWoGqw71ruGAciZs1hzBIdl7L6EmvUIXSuVgAa5MHxC3h99d2O3tT2WPMls9C75rUl7HY3Xf78Ev9LL-EMDKMYV1MXhzckhxe-jzYPe-ox2szHBxjFrDnXDa86VKujrf9B1HFMo-QolZMOFKsuEsCOFKeacrLtMA0wfqtSlSn2oUp-qLJJXf6a4CM7dFeDtEfgtPX_6X79fOhKrpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145834658</pqid></control><display><type>article</type><title>Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics</title><source>ACS Publications</source><source>MEDLINE</source><creator>Hong, Richard S. ; Alagbe, Busayo D. ; Mattei, Alessandra ; Sheikh, Ahmad Y. ; Tuckerman, Mark E.</creator><creatorcontrib>Hong, Richard S. ; Alagbe, Busayo D. ; Mattei, Alessandra ; Sheikh, Ahmad Y. ; Tuckerman, Mark E.</creatorcontrib><description>Dynamic or structurally induced ionization is a critical aspect of many physical, chemical, and biological processes. Molecular dynamics (MD) based simulation approaches, specifically constant pH MD methods, have been developed to simulate ionization states of molecules or proteins under experimentally or physiologically relevant conditions. While such approaches are now widely utilized to predict ionization sites of macromolecules or to study physical or biological phenomena, they are often computationally expensive and require long simulation times to converge. In this article, using the principles of adiabatic free energy dynamics, we introduce an efficient technique for performing constant pH MD simulations within the framework of the adiabatic free energy dynamics (AFED) approach. We call the new approach pH-AFED. We show that pH-AFED provides highly accurate predictions of protein residue pK a values, with a MUE of 0.5 pK a units when coupled with driven adiabatic free energy dynamics (d-AFED), while reducing the required simulation times by more than an order of magnitude. In addition, pH-AFED can be easily integrated into most constant pH MD codes or implementations and flexibly adapted to work in conjunction with enhanced sampling algorithms that target collective variables. We demonstrate that our approaches, with both pH-AFED standalone as well as pH-AFED combined with collective variable based enhanced sampling, provide promising predictive accuracy, with a MUE of 0.6 and 0.5 pK a units respectively, on a diverse range of proteins and enzymes, ranging up to 186 residues and 21 titratable sites. Lastly, we demonstrate how this approach can be utilized to understand the in vivo performance engineered antibodies for immunotherapy.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00704</identifier><identifier>PMID: 39513519</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adiabatic flow ; Algorithms ; Biological activity ; Free energy ; Hydrogen-Ion Concentration ; Ionization ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular Mechanics ; Proteins ; Proteins - chemistry ; Residues ; Sampling ; Simulation ; Thermodynamics</subject><ispartof>Journal of chemical theory and computation, 2024-11, Vol.20 (22), p.10010-10021</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Nov 26, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a345t-bc81e102560ff54769c68c2b0df801157fec23c1fccedd0037dc1b956418c34a3</cites><orcidid>0000-0002-5972-3938 ; 0000-0002-4214-6847 ; 0000-0003-2194-9955 ; 0000-0002-5194-6563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.4c00704$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c00704$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39513519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Richard S.</creatorcontrib><creatorcontrib>Alagbe, Busayo D.</creatorcontrib><creatorcontrib>Mattei, Alessandra</creatorcontrib><creatorcontrib>Sheikh, Ahmad Y.</creatorcontrib><creatorcontrib>Tuckerman, Mark E.</creatorcontrib><title>Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Dynamic or structurally induced ionization is a critical aspect of many physical, chemical, and biological processes. Molecular dynamics (MD) based simulation approaches, specifically constant pH MD methods, have been developed to simulate ionization states of molecules or proteins under experimentally or physiologically relevant conditions. While such approaches are now widely utilized to predict ionization sites of macromolecules or to study physical or biological phenomena, they are often computationally expensive and require long simulation times to converge. In this article, using the principles of adiabatic free energy dynamics, we introduce an efficient technique for performing constant pH MD simulations within the framework of the adiabatic free energy dynamics (AFED) approach. We call the new approach pH-AFED. We show that pH-AFED provides highly accurate predictions of protein residue pK a values, with a MUE of 0.5 pK a units when coupled with driven adiabatic free energy dynamics (d-AFED), while reducing the required simulation times by more than an order of magnitude. In addition, pH-AFED can be easily integrated into most constant pH MD codes or implementations and flexibly adapted to work in conjunction with enhanced sampling algorithms that target collective variables. We demonstrate that our approaches, with both pH-AFED standalone as well as pH-AFED combined with collective variable based enhanced sampling, provide promising predictive accuracy, with a MUE of 0.6 and 0.5 pK a units respectively, on a diverse range of proteins and enzymes, ranging up to 186 residues and 21 titratable sites. Lastly, we demonstrate how this approach can be utilized to understand the in vivo performance engineered antibodies for immunotherapy.</description><subject>Adiabatic flow</subject><subject>Algorithms</subject><subject>Biological activity</subject><subject>Free energy</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ionization</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Mechanics</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Residues</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Thermodynamics</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc2rEzEUxYMovmd170oCblw4NXfy0ZmVPGqf78EDXeg6ZO4kbWqb1GRGqH-9qf1ABTdJSH7n5B4OIS-BTYHV8M5gnq5xwKlAxmZMPCLXIEVbtapWjy9naK7Is5zXjHEuav6UXPFWApfQXpNvi7AyAW1PTejpwjmP3oaBfk629zj4GDKNjn7YB7P1SO9j8D_N4ZoOqxTH5YrOCzKYMFS7O3rTe9OVZ6S3yVq6CDYt92dxfk6eOLPJ9sVpn5Cvt4sv87vq4dPH-_nNQ2W4kEPVYQO2xJOKOSfFTLWoGqw71ruGAciZs1hzBIdl7L6EmvUIXSuVgAa5MHxC3h99d2O3tT2WPMls9C75rUl7HY3Xf78Ev9LL-EMDKMYV1MXhzckhxe-jzYPe-ox2szHBxjFrDnXDa86VKujrf9B1HFMo-QolZMOFKsuEsCOFKeacrLtMA0wfqtSlSn2oUp-qLJJXf6a4CM7dFeDtEfgtPX_6X79fOhKrpQ</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Hong, Richard S.</creator><creator>Alagbe, Busayo D.</creator><creator>Mattei, Alessandra</creator><creator>Sheikh, Ahmad Y.</creator><creator>Tuckerman, Mark E.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5972-3938</orcidid><orcidid>https://orcid.org/0000-0002-4214-6847</orcidid><orcidid>https://orcid.org/0000-0003-2194-9955</orcidid><orcidid>https://orcid.org/0000-0002-5194-6563</orcidid></search><sort><creationdate>20241126</creationdate><title>Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics</title><author>Hong, Richard S. ; Alagbe, Busayo D. ; Mattei, Alessandra ; Sheikh, Ahmad Y. ; Tuckerman, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-bc81e102560ff54769c68c2b0df801157fec23c1fccedd0037dc1b956418c34a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adiabatic flow</topic><topic>Algorithms</topic><topic>Biological activity</topic><topic>Free energy</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ionization</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Mechanics</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Residues</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Richard S.</creatorcontrib><creatorcontrib>Alagbe, Busayo D.</creatorcontrib><creatorcontrib>Mattei, Alessandra</creatorcontrib><creatorcontrib>Sheikh, Ahmad Y.</creatorcontrib><creatorcontrib>Tuckerman, Mark E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Richard S.</au><au>Alagbe, Busayo D.</au><au>Mattei, Alessandra</au><au>Sheikh, Ahmad Y.</au><au>Tuckerman, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-11-26</date><risdate>2024</risdate><volume>20</volume><issue>22</issue><spage>10010</spage><epage>10021</epage><pages>10010-10021</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>Dynamic or structurally induced ionization is a critical aspect of many physical, chemical, and biological processes. Molecular dynamics (MD) based simulation approaches, specifically constant pH MD methods, have been developed to simulate ionization states of molecules or proteins under experimentally or physiologically relevant conditions. While such approaches are now widely utilized to predict ionization sites of macromolecules or to study physical or biological phenomena, they are often computationally expensive and require long simulation times to converge. In this article, using the principles of adiabatic free energy dynamics, we introduce an efficient technique for performing constant pH MD simulations within the framework of the adiabatic free energy dynamics (AFED) approach. We call the new approach pH-AFED. We show that pH-AFED provides highly accurate predictions of protein residue pK a values, with a MUE of 0.5 pK a units when coupled with driven adiabatic free energy dynamics (d-AFED), while reducing the required simulation times by more than an order of magnitude. In addition, pH-AFED can be easily integrated into most constant pH MD codes or implementations and flexibly adapted to work in conjunction with enhanced sampling algorithms that target collective variables. We demonstrate that our approaches, with both pH-AFED standalone as well as pH-AFED combined with collective variable based enhanced sampling, provide promising predictive accuracy, with a MUE of 0.6 and 0.5 pK a units respectively, on a diverse range of proteins and enzymes, ranging up to 186 residues and 21 titratable sites. Lastly, we demonstrate how this approach can be utilized to understand the in vivo performance engineered antibodies for immunotherapy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39513519</pmid><doi>10.1021/acs.jctc.4c00704</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5972-3938</orcidid><orcidid>https://orcid.org/0000-0002-4214-6847</orcidid><orcidid>https://orcid.org/0000-0003-2194-9955</orcidid><orcidid>https://orcid.org/0000-0002-5194-6563</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2024-11, Vol.20 (22), p.10010-10021
issn 1549-9618
1549-9626
1549-9626
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11603612
source ACS Publications; MEDLINE
subjects Adiabatic flow
Algorithms
Biological activity
Free energy
Hydrogen-Ion Concentration
Ionization
Molecular dynamics
Molecular Dynamics Simulation
Molecular Mechanics
Proteins
Proteins - chemistry
Residues
Sampling
Simulation
Thermodynamics
title Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20and%20Efficient%20Predictions%20of%20Dynamic%20Ionization%20through%20Constant-pH%20Adiabatic%20Free%20Energy%20Dynamics&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Hong,%20Richard%20S.&rft.date=2024-11-26&rft.volume=20&rft.issue=22&rft.spage=10010&rft.epage=10021&rft.pages=10010-10021&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00704&rft_dat=%3Cproquest_pubme%3E3145834658%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145834658&rft_id=info:pmid/39513519&rfr_iscdi=true