Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics
Dynamic or structurally induced ionization is a critical aspect of many physical, chemical, and biological processes. Molecular dynamics (MD) based simulation approaches, specifically constant pH MD methods, have been developed to simulate ionization states of molecules or proteins under experimenta...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2024-11, Vol.20 (22), p.10010-10021 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10021 |
---|---|
container_issue | 22 |
container_start_page | 10010 |
container_title | Journal of chemical theory and computation |
container_volume | 20 |
creator | Hong, Richard S. Alagbe, Busayo D. Mattei, Alessandra Sheikh, Ahmad Y. Tuckerman, Mark E. |
description | Dynamic or structurally induced ionization is a critical aspect of many physical, chemical, and biological processes. Molecular dynamics (MD) based simulation approaches, specifically constant pH MD methods, have been developed to simulate ionization states of molecules or proteins under experimentally or physiologically relevant conditions. While such approaches are now widely utilized to predict ionization sites of macromolecules or to study physical or biological phenomena, they are often computationally expensive and require long simulation times to converge. In this article, using the principles of adiabatic free energy dynamics, we introduce an efficient technique for performing constant pH MD simulations within the framework of the adiabatic free energy dynamics (AFED) approach. We call the new approach pH-AFED. We show that pH-AFED provides highly accurate predictions of protein residue pK a values, with a MUE of 0.5 pK a units when coupled with driven adiabatic free energy dynamics (d-AFED), while reducing the required simulation times by more than an order of magnitude. In addition, pH-AFED can be easily integrated into most constant pH MD codes or implementations and flexibly adapted to work in conjunction with enhanced sampling algorithms that target collective variables. We demonstrate that our approaches, with both pH-AFED standalone as well as pH-AFED combined with collective variable based enhanced sampling, provide promising predictive accuracy, with a MUE of 0.6 and 0.5 pK a units respectively, on a diverse range of proteins and enzymes, ranging up to 186 residues and 21 titratable sites. Lastly, we demonstrate how this approach can be utilized to understand the in vivo performance engineered antibodies for immunotherapy. |
doi_str_mv | 10.1021/acs.jctc.4c00704 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11603612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145834658</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-bc81e102560ff54769c68c2b0df801157fec23c1fccedd0037dc1b956418c34a3</originalsourceid><addsrcrecordid>eNp1kc2rEzEUxYMovmd170oCblw4NXfy0ZmVPGqf78EDXeg6ZO4kbWqb1GRGqH-9qf1ABTdJSH7n5B4OIS-BTYHV8M5gnq5xwKlAxmZMPCLXIEVbtapWjy9naK7Is5zXjHEuav6UXPFWApfQXpNvi7AyAW1PTejpwjmP3oaBfk629zj4GDKNjn7YB7P1SO9j8D_N4ZoOqxTH5YrOCzKYMFS7O3rTe9OVZ6S3yVq6CDYt92dxfk6eOLPJ9sVpn5Cvt4sv87vq4dPH-_nNQ2W4kEPVYQO2xJOKOSfFTLWoGqw71ruGAciZs1hzBIdl7L6EmvUIXSuVgAa5MHxC3h99d2O3tT2WPMls9C75rUl7HY3Xf78Ev9LL-EMDKMYV1MXhzckhxe-jzYPe-ox2szHBxjFrDnXDa86VKujrf9B1HFMo-QolZMOFKsuEsCOFKeacrLtMA0wfqtSlSn2oUp-qLJJXf6a4CM7dFeDtEfgtPX_6X79fOhKrpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145834658</pqid></control><display><type>article</type><title>Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics</title><source>ACS Publications</source><source>MEDLINE</source><creator>Hong, Richard S. ; Alagbe, Busayo D. ; Mattei, Alessandra ; Sheikh, Ahmad Y. ; Tuckerman, Mark E.</creator><creatorcontrib>Hong, Richard S. ; Alagbe, Busayo D. ; Mattei, Alessandra ; Sheikh, Ahmad Y. ; Tuckerman, Mark E.</creatorcontrib><description>Dynamic or structurally induced ionization is a critical aspect of many physical, chemical, and biological processes. Molecular dynamics (MD) based simulation approaches, specifically constant pH MD methods, have been developed to simulate ionization states of molecules or proteins under experimentally or physiologically relevant conditions. While such approaches are now widely utilized to predict ionization sites of macromolecules or to study physical or biological phenomena, they are often computationally expensive and require long simulation times to converge. In this article, using the principles of adiabatic free energy dynamics, we introduce an efficient technique for performing constant pH MD simulations within the framework of the adiabatic free energy dynamics (AFED) approach. We call the new approach pH-AFED. We show that pH-AFED provides highly accurate predictions of protein residue pK a values, with a MUE of 0.5 pK a units when coupled with driven adiabatic free energy dynamics (d-AFED), while reducing the required simulation times by more than an order of magnitude. In addition, pH-AFED can be easily integrated into most constant pH MD codes or implementations and flexibly adapted to work in conjunction with enhanced sampling algorithms that target collective variables. We demonstrate that our approaches, with both pH-AFED standalone as well as pH-AFED combined with collective variable based enhanced sampling, provide promising predictive accuracy, with a MUE of 0.6 and 0.5 pK a units respectively, on a diverse range of proteins and enzymes, ranging up to 186 residues and 21 titratable sites. Lastly, we demonstrate how this approach can be utilized to understand the in vivo performance engineered antibodies for immunotherapy.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00704</identifier><identifier>PMID: 39513519</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adiabatic flow ; Algorithms ; Biological activity ; Free energy ; Hydrogen-Ion Concentration ; Ionization ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular Mechanics ; Proteins ; Proteins - chemistry ; Residues ; Sampling ; Simulation ; Thermodynamics</subject><ispartof>Journal of chemical theory and computation, 2024-11, Vol.20 (22), p.10010-10021</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Nov 26, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a345t-bc81e102560ff54769c68c2b0df801157fec23c1fccedd0037dc1b956418c34a3</cites><orcidid>0000-0002-5972-3938 ; 0000-0002-4214-6847 ; 0000-0003-2194-9955 ; 0000-0002-5194-6563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.4c00704$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c00704$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39513519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Richard S.</creatorcontrib><creatorcontrib>Alagbe, Busayo D.</creatorcontrib><creatorcontrib>Mattei, Alessandra</creatorcontrib><creatorcontrib>Sheikh, Ahmad Y.</creatorcontrib><creatorcontrib>Tuckerman, Mark E.</creatorcontrib><title>Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Dynamic or structurally induced ionization is a critical aspect of many physical, chemical, and biological processes. Molecular dynamics (MD) based simulation approaches, specifically constant pH MD methods, have been developed to simulate ionization states of molecules or proteins under experimentally or physiologically relevant conditions. While such approaches are now widely utilized to predict ionization sites of macromolecules or to study physical or biological phenomena, they are often computationally expensive and require long simulation times to converge. In this article, using the principles of adiabatic free energy dynamics, we introduce an efficient technique for performing constant pH MD simulations within the framework of the adiabatic free energy dynamics (AFED) approach. We call the new approach pH-AFED. We show that pH-AFED provides highly accurate predictions of protein residue pK a values, with a MUE of 0.5 pK a units when coupled with driven adiabatic free energy dynamics (d-AFED), while reducing the required simulation times by more than an order of magnitude. In addition, pH-AFED can be easily integrated into most constant pH MD codes or implementations and flexibly adapted to work in conjunction with enhanced sampling algorithms that target collective variables. We demonstrate that our approaches, with both pH-AFED standalone as well as pH-AFED combined with collective variable based enhanced sampling, provide promising predictive accuracy, with a MUE of 0.6 and 0.5 pK a units respectively, on a diverse range of proteins and enzymes, ranging up to 186 residues and 21 titratable sites. Lastly, we demonstrate how this approach can be utilized to understand the in vivo performance engineered antibodies for immunotherapy.</description><subject>Adiabatic flow</subject><subject>Algorithms</subject><subject>Biological activity</subject><subject>Free energy</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ionization</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Mechanics</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Residues</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Thermodynamics</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc2rEzEUxYMovmd170oCblw4NXfy0ZmVPGqf78EDXeg6ZO4kbWqb1GRGqH-9qf1ABTdJSH7n5B4OIS-BTYHV8M5gnq5xwKlAxmZMPCLXIEVbtapWjy9naK7Is5zXjHEuav6UXPFWApfQXpNvi7AyAW1PTejpwjmP3oaBfk629zj4GDKNjn7YB7P1SO9j8D_N4ZoOqxTH5YrOCzKYMFS7O3rTe9OVZ6S3yVq6CDYt92dxfk6eOLPJ9sVpn5Cvt4sv87vq4dPH-_nNQ2W4kEPVYQO2xJOKOSfFTLWoGqw71ruGAciZs1hzBIdl7L6EmvUIXSuVgAa5MHxC3h99d2O3tT2WPMls9C75rUl7HY3Xf78Ev9LL-EMDKMYV1MXhzckhxe-jzYPe-ox2szHBxjFrDnXDa86VKujrf9B1HFMo-QolZMOFKsuEsCOFKeacrLtMA0wfqtSlSn2oUp-qLJJXf6a4CM7dFeDtEfgtPX_6X79fOhKrpQ</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Hong, Richard S.</creator><creator>Alagbe, Busayo D.</creator><creator>Mattei, Alessandra</creator><creator>Sheikh, Ahmad Y.</creator><creator>Tuckerman, Mark E.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5972-3938</orcidid><orcidid>https://orcid.org/0000-0002-4214-6847</orcidid><orcidid>https://orcid.org/0000-0003-2194-9955</orcidid><orcidid>https://orcid.org/0000-0002-5194-6563</orcidid></search><sort><creationdate>20241126</creationdate><title>Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics</title><author>Hong, Richard S. ; Alagbe, Busayo D. ; Mattei, Alessandra ; Sheikh, Ahmad Y. ; Tuckerman, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-bc81e102560ff54769c68c2b0df801157fec23c1fccedd0037dc1b956418c34a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adiabatic flow</topic><topic>Algorithms</topic><topic>Biological activity</topic><topic>Free energy</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ionization</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Mechanics</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Residues</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Richard S.</creatorcontrib><creatorcontrib>Alagbe, Busayo D.</creatorcontrib><creatorcontrib>Mattei, Alessandra</creatorcontrib><creatorcontrib>Sheikh, Ahmad Y.</creatorcontrib><creatorcontrib>Tuckerman, Mark E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Richard S.</au><au>Alagbe, Busayo D.</au><au>Mattei, Alessandra</au><au>Sheikh, Ahmad Y.</au><au>Tuckerman, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-11-26</date><risdate>2024</risdate><volume>20</volume><issue>22</issue><spage>10010</spage><epage>10021</epage><pages>10010-10021</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>Dynamic or structurally induced ionization is a critical aspect of many physical, chemical, and biological processes. Molecular dynamics (MD) based simulation approaches, specifically constant pH MD methods, have been developed to simulate ionization states of molecules or proteins under experimentally or physiologically relevant conditions. While such approaches are now widely utilized to predict ionization sites of macromolecules or to study physical or biological phenomena, they are often computationally expensive and require long simulation times to converge. In this article, using the principles of adiabatic free energy dynamics, we introduce an efficient technique for performing constant pH MD simulations within the framework of the adiabatic free energy dynamics (AFED) approach. We call the new approach pH-AFED. We show that pH-AFED provides highly accurate predictions of protein residue pK a values, with a MUE of 0.5 pK a units when coupled with driven adiabatic free energy dynamics (d-AFED), while reducing the required simulation times by more than an order of magnitude. In addition, pH-AFED can be easily integrated into most constant pH MD codes or implementations and flexibly adapted to work in conjunction with enhanced sampling algorithms that target collective variables. We demonstrate that our approaches, with both pH-AFED standalone as well as pH-AFED combined with collective variable based enhanced sampling, provide promising predictive accuracy, with a MUE of 0.6 and 0.5 pK a units respectively, on a diverse range of proteins and enzymes, ranging up to 186 residues and 21 titratable sites. Lastly, we demonstrate how this approach can be utilized to understand the in vivo performance engineered antibodies for immunotherapy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39513519</pmid><doi>10.1021/acs.jctc.4c00704</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5972-3938</orcidid><orcidid>https://orcid.org/0000-0002-4214-6847</orcidid><orcidid>https://orcid.org/0000-0003-2194-9955</orcidid><orcidid>https://orcid.org/0000-0002-5194-6563</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2024-11, Vol.20 (22), p.10010-10021 |
issn | 1549-9618 1549-9626 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11603612 |
source | ACS Publications; MEDLINE |
subjects | Adiabatic flow Algorithms Biological activity Free energy Hydrogen-Ion Concentration Ionization Molecular dynamics Molecular Dynamics Simulation Molecular Mechanics Proteins Proteins - chemistry Residues Sampling Simulation Thermodynamics |
title | Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20and%20Efficient%20Predictions%20of%20Dynamic%20Ionization%20through%20Constant-pH%20Adiabatic%20Free%20Energy%20Dynamics&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Hong,%20Richard%20S.&rft.date=2024-11-26&rft.volume=20&rft.issue=22&rft.spage=10010&rft.epage=10021&rft.pages=10010-10021&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00704&rft_dat=%3Cproquest_pubme%3E3145834658%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145834658&rft_id=info:pmid/39513519&rfr_iscdi=true |