Combined HDAC8 and checkpoint kinase inhibition induces tumor-selective synthetic lethality in preclinical models

The elevated level of replication stress is an intrinsic characteristic of cancer cells. Targeting the mechanisms that maintain genome stability to further increase replication stress and thus induce severe genome instability has become a promising approach for cancer treatment. Here, we identify hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2024-12, Vol.134 (23), p.1-17
Hauptverfasser: Chang, Ting-Yu, Yan, Yan, Yu, Zih-Yao, Rathore, Moeez, Lee, Nian-Zhe, Tseng, Hui-Ju, Cheng, Li-Hsin, Huang, Wei-Jan, Zhang, Wei, Chan, Ernest R, Qing, Yulan, Kang, Ming-Lun, Wang, Rui, Tsai, Kelvin K, Pink, John J, Harte, William E, Gerson, Stanton L, Lee, Sung-Bau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 23
container_start_page 1
container_title The Journal of clinical investigation
container_volume 134
creator Chang, Ting-Yu
Yan, Yan
Yu, Zih-Yao
Rathore, Moeez
Lee, Nian-Zhe
Tseng, Hui-Ju
Cheng, Li-Hsin
Huang, Wei-Jan
Zhang, Wei
Chan, Ernest R
Qing, Yulan
Kang, Ming-Lun
Wang, Rui
Tsai, Kelvin K
Pink, John J
Harte, William E
Gerson, Stanton L
Lee, Sung-Bau
description The elevated level of replication stress is an intrinsic characteristic of cancer cells. Targeting the mechanisms that maintain genome stability to further increase replication stress and thus induce severe genome instability has become a promising approach for cancer treatment. Here, we identify histone deacetylase 8 (HDAC8) as a drug target whose inactivation synergized with the inhibition of checkpoint kinases to elicit substantial replication stress and compromise genome integrity selectively in cancer cells. We showed that simultaneous inhibition of HDAC8 and checkpoint kinases led to extensive replication fork collapse, irreversible cell-cycle arrest, and synergistic vulnerability in various cancer cells. The efficacy of the combination treatment was further validated in patient tumor-derived organoid (PDO) and xenograft mouse (PDX) models, providing important insights into patient-specific drug responses. Our data revealed that HDAC8 activity was essential for reducing the acetylation level of structural maintenance of chromosomes protein 3 (SMC3) ahead of replication forks and preventing R loop formation. HDAC8 inactivation resulted in slowed fork progression and checkpoint kinase activation. Our findings indicate that HDAC8 guards the integrity of the replicating genome, and the cancer-specific synthetic lethality between HDAC8 and checkpoint kinases provides a promising replication stress-targeting strategy for treating a broad range of cancers.
doi_str_mv 10.1172/JCI165448
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11601943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820589100</galeid><sourcerecordid>A820589100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4138-12592e68ab20d522a493170c8ba1c5d9e5836c3e593292fd1b3b10a8a289e2103</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhlcIREvhwB9AKyEhOGzx58Y-oWj5aFClSnxdLa93knXrtdO1tyL_HkeUkKAckA8e2c-8M_a8RfEco3OMZ-Tt52aBa86YeFCcYs5FJQgVD_fik-JJjNcIYcY4e1ycUMloPUPytLhtwtBaD1158X7eiFL7rjQ9mJt1sD6VN9brCKX1vW1tssHnsJsMxDJNQxirCA5MsndQxo1PPSRrSgep186mTWbL9QjGWW-NduUQOnDxafFoqV2EZ_f7WfH944dvzUV1efVp0cwvK8MwFRUmXBKohW4J6jghmkmKZ8iIVmPDOwlc0NpQ4JISSZYdbmmLkRaaCAkEI3pWvPutu57aAToDPo3aqfVoBz1uVNBWHd5426tVuFMY1wjnD8oKr-8VxnA7QUxqsNGAc9pDmKKiGMsZwTXZoi__Qa_DNPr8vkwxRiXhbPaXWmkHyvplyIXNVlTNBUFcSIy2jVdHqBV4yF0GD0ubjw_48yN8Xh0M1hxNeHOQkJkEP9NKTzGqxdcv_89e_ThkX-2xPWiX-hjctPVNPCpqxhDjCMvdVDBSW0ernaMz-2J_jDvyj4XpL8yO7Eo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144392547</pqid></control><display><type>article</type><title>Combined HDAC8 and checkpoint kinase inhibition induces tumor-selective synthetic lethality in preclinical models</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Chang, Ting-Yu ; Yan, Yan ; Yu, Zih-Yao ; Rathore, Moeez ; Lee, Nian-Zhe ; Tseng, Hui-Ju ; Cheng, Li-Hsin ; Huang, Wei-Jan ; Zhang, Wei ; Chan, Ernest R ; Qing, Yulan ; Kang, Ming-Lun ; Wang, Rui ; Tsai, Kelvin K ; Pink, John J ; Harte, William E ; Gerson, Stanton L ; Lee, Sung-Bau</creator><creatorcontrib>Chang, Ting-Yu ; Yan, Yan ; Yu, Zih-Yao ; Rathore, Moeez ; Lee, Nian-Zhe ; Tseng, Hui-Ju ; Cheng, Li-Hsin ; Huang, Wei-Jan ; Zhang, Wei ; Chan, Ernest R ; Qing, Yulan ; Kang, Ming-Lun ; Wang, Rui ; Tsai, Kelvin K ; Pink, John J ; Harte, William E ; Gerson, Stanton L ; Lee, Sung-Bau</creatorcontrib><description>The elevated level of replication stress is an intrinsic characteristic of cancer cells. Targeting the mechanisms that maintain genome stability to further increase replication stress and thus induce severe genome instability has become a promising approach for cancer treatment. Here, we identify histone deacetylase 8 (HDAC8) as a drug target whose inactivation synergized with the inhibition of checkpoint kinases to elicit substantial replication stress and compromise genome integrity selectively in cancer cells. We showed that simultaneous inhibition of HDAC8 and checkpoint kinases led to extensive replication fork collapse, irreversible cell-cycle arrest, and synergistic vulnerability in various cancer cells. The efficacy of the combination treatment was further validated in patient tumor-derived organoid (PDO) and xenograft mouse (PDX) models, providing important insights into patient-specific drug responses. Our data revealed that HDAC8 activity was essential for reducing the acetylation level of structural maintenance of chromosomes protein 3 (SMC3) ahead of replication forks and preventing R loop formation. HDAC8 inactivation resulted in slowed fork progression and checkpoint kinase activation. Our findings indicate that HDAC8 guards the integrity of the replicating genome, and the cancer-specific synthetic lethality between HDAC8 and checkpoint kinases provides a promising replication stress-targeting strategy for treating a broad range of cancers.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI165448</identifier><identifier>PMID: 39436709</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Acetylation ; Analysis ; Animal models ; Animals ; Cancer ; Cancer therapies ; Care and treatment ; Cell culture ; Cell Cycle Proteins - antagonists &amp; inhibitors ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Line, Tumor ; Chromosomes ; Cyclin-dependent kinases ; DNA damage ; DNA Replication - drug effects ; Epigenetics ; Genetic aspects ; Genomes ; Genomic instability ; Genomics ; Histone deacetylase ; Histone Deacetylase Inhibitors - pharmacology ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Humans ; Kinases ; Lethality ; Mice ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Organoids ; Phosphorylation ; Protein Kinase Inhibitors - pharmacology ; Proteins ; Replication forks ; Repressor Proteins - antagonists &amp; inhibitors ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Synthetic Lethal Mutations ; Therapeutic targets ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>The Journal of clinical investigation, 2024-12, Vol.134 (23), p.1-17</ispartof><rights>COPYRIGHT 2024 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Dec 2024</rights><rights>2024 Chang et al. 2024 Chang et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3106-2549 ; 0000-0001-9548-5829 ; 0000-0001-8117-4309 ; 0000-0002-8628-8687 ; 0000-0001-5794-7201 ; 0000-0002-7110-0098 ; 0000-0001-9277-5329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601943/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601943/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39436709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Ting-Yu</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Yu, Zih-Yao</creatorcontrib><creatorcontrib>Rathore, Moeez</creatorcontrib><creatorcontrib>Lee, Nian-Zhe</creatorcontrib><creatorcontrib>Tseng, Hui-Ju</creatorcontrib><creatorcontrib>Cheng, Li-Hsin</creatorcontrib><creatorcontrib>Huang, Wei-Jan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Chan, Ernest R</creatorcontrib><creatorcontrib>Qing, Yulan</creatorcontrib><creatorcontrib>Kang, Ming-Lun</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Tsai, Kelvin K</creatorcontrib><creatorcontrib>Pink, John J</creatorcontrib><creatorcontrib>Harte, William E</creatorcontrib><creatorcontrib>Gerson, Stanton L</creatorcontrib><creatorcontrib>Lee, Sung-Bau</creatorcontrib><title>Combined HDAC8 and checkpoint kinase inhibition induces tumor-selective synthetic lethality in preclinical models</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>The elevated level of replication stress is an intrinsic characteristic of cancer cells. Targeting the mechanisms that maintain genome stability to further increase replication stress and thus induce severe genome instability has become a promising approach for cancer treatment. Here, we identify histone deacetylase 8 (HDAC8) as a drug target whose inactivation synergized with the inhibition of checkpoint kinases to elicit substantial replication stress and compromise genome integrity selectively in cancer cells. We showed that simultaneous inhibition of HDAC8 and checkpoint kinases led to extensive replication fork collapse, irreversible cell-cycle arrest, and synergistic vulnerability in various cancer cells. The efficacy of the combination treatment was further validated in patient tumor-derived organoid (PDO) and xenograft mouse (PDX) models, providing important insights into patient-specific drug responses. Our data revealed that HDAC8 activity was essential for reducing the acetylation level of structural maintenance of chromosomes protein 3 (SMC3) ahead of replication forks and preventing R loop formation. HDAC8 inactivation resulted in slowed fork progression and checkpoint kinase activation. Our findings indicate that HDAC8 guards the integrity of the replicating genome, and the cancer-specific synthetic lethality between HDAC8 and checkpoint kinases provides a promising replication stress-targeting strategy for treating a broad range of cancers.</description><subject>Acetylation</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Cell culture</subject><subject>Cell Cycle Proteins - antagonists &amp; inhibitors</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Chromosomes</subject><subject>Cyclin-dependent kinases</subject><subject>DNA damage</subject><subject>DNA Replication - drug effects</subject><subject>Epigenetics</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Genomics</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Humans</subject><subject>Kinases</subject><subject>Lethality</subject><subject>Mice</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Organoids</subject><subject>Phosphorylation</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Proteins</subject><subject>Replication forks</subject><subject>Repressor Proteins - antagonists &amp; inhibitors</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Synthetic Lethal Mutations</subject><subject>Therapeutic targets</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk1vEzEQhlcIREvhwB9AKyEhOGzx58Y-oWj5aFClSnxdLa93knXrtdO1tyL_HkeUkKAckA8e2c-8M_a8RfEco3OMZ-Tt52aBa86YeFCcYs5FJQgVD_fik-JJjNcIYcY4e1ycUMloPUPytLhtwtBaD1158X7eiFL7rjQ9mJt1sD6VN9brCKX1vW1tssHnsJsMxDJNQxirCA5MsndQxo1PPSRrSgep186mTWbL9QjGWW-NduUQOnDxafFoqV2EZ_f7WfH944dvzUV1efVp0cwvK8MwFRUmXBKohW4J6jghmkmKZ8iIVmPDOwlc0NpQ4JISSZYdbmmLkRaaCAkEI3pWvPutu57aAToDPo3aqfVoBz1uVNBWHd5426tVuFMY1wjnD8oKr-8VxnA7QUxqsNGAc9pDmKKiGMsZwTXZoi__Qa_DNPr8vkwxRiXhbPaXWmkHyvplyIXNVlTNBUFcSIy2jVdHqBV4yF0GD0ubjw_48yN8Xh0M1hxNeHOQkJkEP9NKTzGqxdcv_89e_ThkX-2xPWiX-hjctPVNPCpqxhDjCMvdVDBSW0ernaMz-2J_jDvyj4XpL8yO7Eo</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Chang, Ting-Yu</creator><creator>Yan, Yan</creator><creator>Yu, Zih-Yao</creator><creator>Rathore, Moeez</creator><creator>Lee, Nian-Zhe</creator><creator>Tseng, Hui-Ju</creator><creator>Cheng, Li-Hsin</creator><creator>Huang, Wei-Jan</creator><creator>Zhang, Wei</creator><creator>Chan, Ernest R</creator><creator>Qing, Yulan</creator><creator>Kang, Ming-Lun</creator><creator>Wang, Rui</creator><creator>Tsai, Kelvin K</creator><creator>Pink, John J</creator><creator>Harte, William E</creator><creator>Gerson, Stanton L</creator><creator>Lee, Sung-Bau</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3106-2549</orcidid><orcidid>https://orcid.org/0000-0001-9548-5829</orcidid><orcidid>https://orcid.org/0000-0001-8117-4309</orcidid><orcidid>https://orcid.org/0000-0002-8628-8687</orcidid><orcidid>https://orcid.org/0000-0001-5794-7201</orcidid><orcidid>https://orcid.org/0000-0002-7110-0098</orcidid><orcidid>https://orcid.org/0000-0001-9277-5329</orcidid></search><sort><creationdate>20241201</creationdate><title>Combined HDAC8 and checkpoint kinase inhibition induces tumor-selective synthetic lethality in preclinical models</title><author>Chang, Ting-Yu ; Yan, Yan ; Yu, Zih-Yao ; Rathore, Moeez ; Lee, Nian-Zhe ; Tseng, Hui-Ju ; Cheng, Li-Hsin ; Huang, Wei-Jan ; Zhang, Wei ; Chan, Ernest R ; Qing, Yulan ; Kang, Ming-Lun ; Wang, Rui ; Tsai, Kelvin K ; Pink, John J ; Harte, William E ; Gerson, Stanton L ; Lee, Sung-Bau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4138-12592e68ab20d522a493170c8ba1c5d9e5836c3e593292fd1b3b10a8a289e2103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetylation</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Cell culture</topic><topic>Cell Cycle Proteins - antagonists &amp; inhibitors</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Chromosomes</topic><topic>Cyclin-dependent kinases</topic><topic>DNA damage</topic><topic>DNA Replication - drug effects</topic><topic>Epigenetics</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Genomics</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Humans</topic><topic>Kinases</topic><topic>Lethality</topic><topic>Mice</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Organoids</topic><topic>Phosphorylation</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Proteins</topic><topic>Replication forks</topic><topic>Repressor Proteins - antagonists &amp; inhibitors</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Synthetic Lethal Mutations</topic><topic>Therapeutic targets</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ting-Yu</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Yu, Zih-Yao</creatorcontrib><creatorcontrib>Rathore, Moeez</creatorcontrib><creatorcontrib>Lee, Nian-Zhe</creatorcontrib><creatorcontrib>Tseng, Hui-Ju</creatorcontrib><creatorcontrib>Cheng, Li-Hsin</creatorcontrib><creatorcontrib>Huang, Wei-Jan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Chan, Ernest R</creatorcontrib><creatorcontrib>Qing, Yulan</creatorcontrib><creatorcontrib>Kang, Ming-Lun</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Tsai, Kelvin K</creatorcontrib><creatorcontrib>Pink, John J</creatorcontrib><creatorcontrib>Harte, William E</creatorcontrib><creatorcontrib>Gerson, Stanton L</creatorcontrib><creatorcontrib>Lee, Sung-Bau</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ting-Yu</au><au>Yan, Yan</au><au>Yu, Zih-Yao</au><au>Rathore, Moeez</au><au>Lee, Nian-Zhe</au><au>Tseng, Hui-Ju</au><au>Cheng, Li-Hsin</au><au>Huang, Wei-Jan</au><au>Zhang, Wei</au><au>Chan, Ernest R</au><au>Qing, Yulan</au><au>Kang, Ming-Lun</au><au>Wang, Rui</au><au>Tsai, Kelvin K</au><au>Pink, John J</au><au>Harte, William E</au><au>Gerson, Stanton L</au><au>Lee, Sung-Bau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined HDAC8 and checkpoint kinase inhibition induces tumor-selective synthetic lethality in preclinical models</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>134</volume><issue>23</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>The elevated level of replication stress is an intrinsic characteristic of cancer cells. Targeting the mechanisms that maintain genome stability to further increase replication stress and thus induce severe genome instability has become a promising approach for cancer treatment. Here, we identify histone deacetylase 8 (HDAC8) as a drug target whose inactivation synergized with the inhibition of checkpoint kinases to elicit substantial replication stress and compromise genome integrity selectively in cancer cells. We showed that simultaneous inhibition of HDAC8 and checkpoint kinases led to extensive replication fork collapse, irreversible cell-cycle arrest, and synergistic vulnerability in various cancer cells. The efficacy of the combination treatment was further validated in patient tumor-derived organoid (PDO) and xenograft mouse (PDX) models, providing important insights into patient-specific drug responses. Our data revealed that HDAC8 activity was essential for reducing the acetylation level of structural maintenance of chromosomes protein 3 (SMC3) ahead of replication forks and preventing R loop formation. HDAC8 inactivation resulted in slowed fork progression and checkpoint kinase activation. Our findings indicate that HDAC8 guards the integrity of the replicating genome, and the cancer-specific synthetic lethality between HDAC8 and checkpoint kinases provides a promising replication stress-targeting strategy for treating a broad range of cancers.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>39436709</pmid><doi>10.1172/JCI165448</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3106-2549</orcidid><orcidid>https://orcid.org/0000-0001-9548-5829</orcidid><orcidid>https://orcid.org/0000-0001-8117-4309</orcidid><orcidid>https://orcid.org/0000-0002-8628-8687</orcidid><orcidid>https://orcid.org/0000-0001-5794-7201</orcidid><orcidid>https://orcid.org/0000-0002-7110-0098</orcidid><orcidid>https://orcid.org/0000-0001-9277-5329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8238
ispartof The Journal of clinical investigation, 2024-12, Vol.134 (23), p.1-17
issn 1558-8238
0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11601943
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Acetylation
Analysis
Animal models
Animals
Cancer
Cancer therapies
Care and treatment
Cell culture
Cell Cycle Proteins - antagonists & inhibitors
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Line, Tumor
Chromosomes
Cyclin-dependent kinases
DNA damage
DNA Replication - drug effects
Epigenetics
Genetic aspects
Genomes
Genomic instability
Genomics
Histone deacetylase
Histone Deacetylase Inhibitors - pharmacology
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Humans
Kinases
Lethality
Mice
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
Organoids
Phosphorylation
Protein Kinase Inhibitors - pharmacology
Proteins
Replication forks
Repressor Proteins - antagonists & inhibitors
Repressor Proteins - genetics
Repressor Proteins - metabolism
Synthetic Lethal Mutations
Therapeutic targets
Tumors
Xenograft Model Antitumor Assays
title Combined HDAC8 and checkpoint kinase inhibition induces tumor-selective synthetic lethality in preclinical models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20HDAC8%20and%20checkpoint%20kinase%20inhibition%20induces%20tumor-selective%20synthetic%20lethality%20in%20preclinical%20models&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Chang,%20Ting-Yu&rft.date=2024-12-01&rft.volume=134&rft.issue=23&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI165448&rft_dat=%3Cgale_pubme%3EA820589100%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144392547&rft_id=info:pmid/39436709&rft_galeid=A820589100&rfr_iscdi=true