Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures

The strategic integration of low‐dimensional InAs‐based materials and emerging van der Waals systems is advancing in various scientific fields, including electronics, optics, and magnetics. With their unique properties, these InAs‐based van der Waals materials and devices promise further miniaturiza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (48), p.e2403129-n/a
Hauptverfasser: Cheng, Tiantian, Meng, Yuxin, Luo, Man, Xian, Jiachi, Luo, Wenjin, Wang, Weijun, Yue, Fangyu, Ho, Johnny C., Yu, Chenhui, Chu, Junhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page e2403129
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Cheng, Tiantian
Meng, Yuxin
Luo, Man
Xian, Jiachi
Luo, Wenjin
Wang, Weijun
Yue, Fangyu
Ho, Johnny C.
Yu, Chenhui
Chu, Junhao
description The strategic integration of low‐dimensional InAs‐based materials and emerging van der Waals systems is advancing in various scientific fields, including electronics, optics, and magnetics. With their unique properties, these InAs‐based van der Waals materials and devices promise further miniaturization of semiconductor devices in line with Moore's Law. However, progress in this area lags behind other 2D materials like graphene and boron nitride. Challenges include synthesizing pure crystalline phase InAs nanostructures and single‐atomic‐layer 2D InAs films, both vital for advanced van der Waals heterostructures. Also, diverse surface state effects on InAs‐based van der Waals devices complicate their performance evaluation. This review discusses the experimental advances in the van der Waals epitaxy of InAs‐based materials and the working principles of InAs‐based van der Waals devices. Theoretical achievements in understanding and guiding the design of InAs‐based van der Waals systems are highlighted. Focusing on advancing novel selective area growth and remote epitaxy, exploring multi‐functional applications, and incorporating deep learning into first‐principles calculations are proposed. These initiatives aim to overcome existing bottlenecks and accelerate transformative advancements in integrating InAs and van der Waals heterostructures. Integrating low‐dimensional InAs‐based materials with van der Waals systems advances electronics, optics, and magnetics, promoting miniaturization per Moore's Law. However, progress lags due to synthesis challenges and surface state effects. This review addresses experimental advances in the vdW epitaxy of InAs, theoretical system design achievements, and proposes novel growth techniques and deep learning integration to overcome bottlenecks.
doi_str_mv 10.1002/smll.202403129
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11600706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082959361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3549-b9b6894addefc60a292ed6cf8dcd270b5bd465852a6c4ac946c328ca5c56fddb3</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxS1UVGjolSOy1AuXBH_sOutTFUVQkII4tMDR8tqziZHXC_YuiP8ep6GBcuFke_ybp5n3EDqkZEIJYSep9X7CCCsIp0zuoH0qKB-Liskv2zsle-hbSndkzRTTr2iPS8KJFNN9ZGf2UQcDLYQ-YR0snq-09xCWkLALuF8Bvgg9LKPuXRdw1-SndUOLZzFBcBb-Nt3ogC1EfKu1T_gceohd6uNg-iFCOkC7Ta7D99dzhK7PTv_Mz8eLq18X89libHhZyHEta1HJQlsLjRFEM8nACtNU1lg2JXVZ20KUVcm0MIU2shCGs8ro0pSisbbmI_Rzo3s_1C1Yk3eK2qv76Fodn1Wnnfr_J7iVWnaPilJByJSIrHD8qhC7hwFSr1qXDHivA3RDUpxkZ0vJs7Ej9OMDetcNMeT9FKec8yKPzDI12VAmG5IiNNtpKFHrBNU6QbVNMDccvd9hi_-LLANyAzw5D8-fyKnfl4vFm_gLy_qqVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133342702</pqid></control><display><type>article</type><title>Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures</title><source>Access via Wiley Online Library</source><creator>Cheng, Tiantian ; Meng, Yuxin ; Luo, Man ; Xian, Jiachi ; Luo, Wenjin ; Wang, Weijun ; Yue, Fangyu ; Ho, Johnny C. ; Yu, Chenhui ; Chu, Junhao</creator><creatorcontrib>Cheng, Tiantian ; Meng, Yuxin ; Luo, Man ; Xian, Jiachi ; Luo, Wenjin ; Wang, Weijun ; Yue, Fangyu ; Ho, Johnny C. ; Yu, Chenhui ; Chu, Junhao</creatorcontrib><description>The strategic integration of low‐dimensional InAs‐based materials and emerging van der Waals systems is advancing in various scientific fields, including electronics, optics, and magnetics. With their unique properties, these InAs‐based van der Waals materials and devices promise further miniaturization of semiconductor devices in line with Moore's Law. However, progress in this area lags behind other 2D materials like graphene and boron nitride. Challenges include synthesizing pure crystalline phase InAs nanostructures and single‐atomic‐layer 2D InAs films, both vital for advanced van der Waals heterostructures. Also, diverse surface state effects on InAs‐based van der Waals devices complicate their performance evaluation. This review discusses the experimental advances in the van der Waals epitaxy of InAs‐based materials and the working principles of InAs‐based van der Waals devices. Theoretical achievements in understanding and guiding the design of InAs‐based van der Waals systems are highlighted. Focusing on advancing novel selective area growth and remote epitaxy, exploring multi‐functional applications, and incorporating deep learning into first‐principles calculations are proposed. These initiatives aim to overcome existing bottlenecks and accelerate transformative advancements in integrating InAs and van der Waals heterostructures. Integrating low‐dimensional InAs‐based materials with van der Waals systems advances electronics, optics, and magnetics, promoting miniaturization per Moore's Law. However, progress lags due to synthesis challenges and surface state effects. This review addresses experimental advances in the vdW epitaxy of InAs, theoretical system design achievements, and proposes novel growth techniques and deep learning integration to overcome bottlenecks.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202403129</identifier><identifier>PMID: 39030967</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Boron nitride ; device ; electronic ; Epitaxial growth ; First principles ; Graphene ; Heterostructures ; indium arsenide ; Indium arsenides ; Magnetic properties ; Moore's law ; Performance evaluation ; Review ; Semiconductor devices ; Two dimensional materials ; van der Waals heterostructure</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (48), p.e2403129-n/a</ispartof><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3549-b9b6894addefc60a292ed6cf8dcd270b5bd465852a6c4ac946c328ca5c56fddb3</cites><orcidid>0000-0003-3000-8794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202403129$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202403129$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39030967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Tiantian</creatorcontrib><creatorcontrib>Meng, Yuxin</creatorcontrib><creatorcontrib>Luo, Man</creatorcontrib><creatorcontrib>Xian, Jiachi</creatorcontrib><creatorcontrib>Luo, Wenjin</creatorcontrib><creatorcontrib>Wang, Weijun</creatorcontrib><creatorcontrib>Yue, Fangyu</creatorcontrib><creatorcontrib>Ho, Johnny C.</creatorcontrib><creatorcontrib>Yu, Chenhui</creatorcontrib><creatorcontrib>Chu, Junhao</creatorcontrib><title>Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The strategic integration of low‐dimensional InAs‐based materials and emerging van der Waals systems is advancing in various scientific fields, including electronics, optics, and magnetics. With their unique properties, these InAs‐based van der Waals materials and devices promise further miniaturization of semiconductor devices in line with Moore's Law. However, progress in this area lags behind other 2D materials like graphene and boron nitride. Challenges include synthesizing pure crystalline phase InAs nanostructures and single‐atomic‐layer 2D InAs films, both vital for advanced van der Waals heterostructures. Also, diverse surface state effects on InAs‐based van der Waals devices complicate their performance evaluation. This review discusses the experimental advances in the van der Waals epitaxy of InAs‐based materials and the working principles of InAs‐based van der Waals devices. Theoretical achievements in understanding and guiding the design of InAs‐based van der Waals systems are highlighted. Focusing on advancing novel selective area growth and remote epitaxy, exploring multi‐functional applications, and incorporating deep learning into first‐principles calculations are proposed. These initiatives aim to overcome existing bottlenecks and accelerate transformative advancements in integrating InAs and van der Waals heterostructures. Integrating low‐dimensional InAs‐based materials with van der Waals systems advances electronics, optics, and magnetics, promoting miniaturization per Moore's Law. However, progress lags due to synthesis challenges and surface state effects. This review addresses experimental advances in the vdW epitaxy of InAs, theoretical system design achievements, and proposes novel growth techniques and deep learning integration to overcome bottlenecks.</description><subject>2D materials</subject><subject>Boron nitride</subject><subject>device</subject><subject>electronic</subject><subject>Epitaxial growth</subject><subject>First principles</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>indium arsenide</subject><subject>Indium arsenides</subject><subject>Magnetic properties</subject><subject>Moore's law</subject><subject>Performance evaluation</subject><subject>Review</subject><subject>Semiconductor devices</subject><subject>Two dimensional materials</subject><subject>van der Waals heterostructure</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc1PGzEQxS1UVGjolSOy1AuXBH_sOutTFUVQkII4tMDR8tqziZHXC_YuiP8ep6GBcuFke_ybp5n3EDqkZEIJYSep9X7CCCsIp0zuoH0qKB-Liskv2zsle-hbSndkzRTTr2iPS8KJFNN9ZGf2UQcDLYQ-YR0snq-09xCWkLALuF8Bvgg9LKPuXRdw1-SndUOLZzFBcBb-Nt3ogC1EfKu1T_gceohd6uNg-iFCOkC7Ta7D99dzhK7PTv_Mz8eLq18X89libHhZyHEta1HJQlsLjRFEM8nACtNU1lg2JXVZ20KUVcm0MIU2shCGs8ro0pSisbbmI_Rzo3s_1C1Yk3eK2qv76Fodn1Wnnfr_J7iVWnaPilJByJSIrHD8qhC7hwFSr1qXDHivA3RDUpxkZ0vJs7Ej9OMDetcNMeT9FKec8yKPzDI12VAmG5IiNNtpKFHrBNU6QbVNMDccvd9hi_-LLANyAzw5D8-fyKnfl4vFm_gLy_qqVg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Cheng, Tiantian</creator><creator>Meng, Yuxin</creator><creator>Luo, Man</creator><creator>Xian, Jiachi</creator><creator>Luo, Wenjin</creator><creator>Wang, Weijun</creator><creator>Yue, Fangyu</creator><creator>Ho, Johnny C.</creator><creator>Yu, Chenhui</creator><creator>Chu, Junhao</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3000-8794</orcidid></search><sort><creationdate>20241101</creationdate><title>Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures</title><author>Cheng, Tiantian ; Meng, Yuxin ; Luo, Man ; Xian, Jiachi ; Luo, Wenjin ; Wang, Weijun ; Yue, Fangyu ; Ho, Johnny C. ; Yu, Chenhui ; Chu, Junhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3549-b9b6894addefc60a292ed6cf8dcd270b5bd465852a6c4ac946c328ca5c56fddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>Boron nitride</topic><topic>device</topic><topic>electronic</topic><topic>Epitaxial growth</topic><topic>First principles</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>indium arsenide</topic><topic>Indium arsenides</topic><topic>Magnetic properties</topic><topic>Moore's law</topic><topic>Performance evaluation</topic><topic>Review</topic><topic>Semiconductor devices</topic><topic>Two dimensional materials</topic><topic>van der Waals heterostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Tiantian</creatorcontrib><creatorcontrib>Meng, Yuxin</creatorcontrib><creatorcontrib>Luo, Man</creatorcontrib><creatorcontrib>Xian, Jiachi</creatorcontrib><creatorcontrib>Luo, Wenjin</creatorcontrib><creatorcontrib>Wang, Weijun</creatorcontrib><creatorcontrib>Yue, Fangyu</creatorcontrib><creatorcontrib>Ho, Johnny C.</creatorcontrib><creatorcontrib>Yu, Chenhui</creatorcontrib><creatorcontrib>Chu, Junhao</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Tiantian</au><au>Meng, Yuxin</au><au>Luo, Man</au><au>Xian, Jiachi</au><au>Luo, Wenjin</au><au>Wang, Weijun</au><au>Yue, Fangyu</au><au>Ho, Johnny C.</au><au>Yu, Chenhui</au><au>Chu, Junhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>20</volume><issue>48</issue><spage>e2403129</spage><epage>n/a</epage><pages>e2403129-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>The strategic integration of low‐dimensional InAs‐based materials and emerging van der Waals systems is advancing in various scientific fields, including electronics, optics, and magnetics. With their unique properties, these InAs‐based van der Waals materials and devices promise further miniaturization of semiconductor devices in line with Moore's Law. However, progress in this area lags behind other 2D materials like graphene and boron nitride. Challenges include synthesizing pure crystalline phase InAs nanostructures and single‐atomic‐layer 2D InAs films, both vital for advanced van der Waals heterostructures. Also, diverse surface state effects on InAs‐based van der Waals devices complicate their performance evaluation. This review discusses the experimental advances in the van der Waals epitaxy of InAs‐based materials and the working principles of InAs‐based van der Waals devices. Theoretical achievements in understanding and guiding the design of InAs‐based van der Waals systems are highlighted. Focusing on advancing novel selective area growth and remote epitaxy, exploring multi‐functional applications, and incorporating deep learning into first‐principles calculations are proposed. These initiatives aim to overcome existing bottlenecks and accelerate transformative advancements in integrating InAs and van der Waals heterostructures. Integrating low‐dimensional InAs‐based materials with van der Waals systems advances electronics, optics, and magnetics, promoting miniaturization per Moore's Law. However, progress lags due to synthesis challenges and surface state effects. This review addresses experimental advances in the vdW epitaxy of InAs, theoretical system design achievements, and proposes novel growth techniques and deep learning integration to overcome bottlenecks.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39030967</pmid><doi>10.1002/smll.202403129</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-3000-8794</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (48), p.e2403129-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11600706
source Access via Wiley Online Library
subjects 2D materials
Boron nitride
device
electronic
Epitaxial growth
First principles
Graphene
Heterostructures
indium arsenide
Indium arsenides
Magnetic properties
Moore's law
Performance evaluation
Review
Semiconductor devices
Two dimensional materials
van der Waals heterostructure
title Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancements%20and%20Challenges%20in%20the%20Integration%20of%20Indium%20Arsenide%20and%20Van%20der%20Waals%20Heterostructures&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cheng,%20Tiantian&rft.date=2024-11-01&rft.volume=20&rft.issue=48&rft.spage=e2403129&rft.epage=n/a&rft.pages=e2403129-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202403129&rft_dat=%3Cproquest_pubme%3E3082959361%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133342702&rft_id=info:pmid/39030967&rfr_iscdi=true