Development and Characterization of 3D-Printed PLA/Exfoliated Graphite Composites for Enhanced Electrochemical Performance in Energy Storage Applications

This research introduces a new way to create a composite material (PLA/EG) for 3D printing. It combines polylactic acid (PLA) with exfoliated graphite (EG) using a physical mixing method, followed by direct mixing in a single-screw extruder. Structural and vibrational analyses using X-ray diffractio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-11, Vol.16 (22), p.3131
Hauptverfasser: Dos Santos, Ananias Lima, de Souza, Francisco Cezar Ramos, Martins da Costa, João Carlos, Gonçalves, Daniel Araújo, Passos, Raimundo Ribeiro, Pocrifka, Leandro Aparecido
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 3131
container_title Polymers
container_volume 16
creator Dos Santos, Ananias Lima
de Souza, Francisco Cezar Ramos
Martins da Costa, João Carlos
Gonçalves, Daniel Araújo
Passos, Raimundo Ribeiro
Pocrifka, Leandro Aparecido
description This research introduces a new way to create a composite material (PLA/EG) for 3D printing. It combines polylactic acid (PLA) with exfoliated graphite (EG) using a physical mixing method, followed by direct mixing in a single-screw extruder. Structural and vibrational analyses using X-ray diffraction and Fourier transform infrared spectroscopy confirmed the PLA/EG's formation (composite). The analysis also suggests physical adsorption as the primary interaction between the two materials. The exfoliated graphite acts as a barrier (thermal behavior), reducing heat transfer via TG. Electrochemical measurements reveal redox activity (cyclic voltammetry) with a specific capacitance of ~ 6 F g , low solution resistance, and negligible charge transfer resistance, indicating ion movement through a Warburg diffusion process. Additionally, in terms of complex behavior (electrochemical impedance spectroscopy), the PLA/EG's actual capacitance C'(ω) displayed a value greater than 1000 μF cm , highlighting the composite's effectiveness in storing charge. These results demonstrate that PLA/EG composites hold significant promise as electrodes in electronic devices. The methodology used in this study not only provides a practical way to create functional composites but also opens doors for new applications in electronics and energy storage.
doi_str_mv 10.3390/polym16223131
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11598161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818468457</galeid><sourcerecordid>A818468457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-ff12d48cf94818d215d4392a950b0cf9dd6da3508180e912c26b747ca968ab4c3</originalsourceid><addsrcrecordid>eNpdkktv1DAQgCMEolXpkSuyxIVLWr_ixCe02m4L0kqsBJwtr-NsXDl2sLNVl3_Cv-2ELVWLffDY883TUxTvCb5gTOLLMfrDQASljDDyqjiluGYlZwK_fiafFOc532JYvBKC1G-LEyYrKSmlp8WfK3tnfRwHGyakQ4uWvU7aTDa533pyMaDYIXZVbpILk23RZr24XN130Ts9X2-SHns3WbSMwxgzSBl1MaFV6HUwAKy8NVOKpreDM9qjjU2gH2YlcgE4m3YH9H2KSe8sWoyjB2yOm98Vbzrtsz1_PM-Kn9erH8sv5frbzdflYl0ahulUdh2hLW9MJ3lDmpaSquVMUi0rvMXw2rai1azCoMRWEmqo2Na8NlqKRm-5YWfF56Pfcb8dbGugEUl7NSY36HRQUTv1UhNcr3bxThFSyYYIAh4-PXpI8dfe5kkNLhvrvQ427rOCz2FcQPsloB__Q2_jPgWo7y8FedY1B-riSO20t8qFLkJgA7uduxiD7Ry8L6AkLhpe1WBQHg1Mijkn2z2lT7CaJ0W9mBTgPzyv-Yn-NxfsAcibvGc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133350774</pqid></control><display><type>article</type><title>Development and Characterization of 3D-Printed PLA/Exfoliated Graphite Composites for Enhanced Electrochemical Performance in Energy Storage Applications</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Dos Santos, Ananias Lima ; de Souza, Francisco Cezar Ramos ; Martins da Costa, João Carlos ; Gonçalves, Daniel Araújo ; Passos, Raimundo Ribeiro ; Pocrifka, Leandro Aparecido</creator><creatorcontrib>Dos Santos, Ananias Lima ; de Souza, Francisco Cezar Ramos ; Martins da Costa, João Carlos ; Gonçalves, Daniel Araújo ; Passos, Raimundo Ribeiro ; Pocrifka, Leandro Aparecido</creatorcontrib><description>This research introduces a new way to create a composite material (PLA/EG) for 3D printing. It combines polylactic acid (PLA) with exfoliated graphite (EG) using a physical mixing method, followed by direct mixing in a single-screw extruder. Structural and vibrational analyses using X-ray diffraction and Fourier transform infrared spectroscopy confirmed the PLA/EG's formation (composite). The analysis also suggests physical adsorption as the primary interaction between the two materials. The exfoliated graphite acts as a barrier (thermal behavior), reducing heat transfer via TG. Electrochemical measurements reveal redox activity (cyclic voltammetry) with a specific capacitance of ~ 6 F g , low solution resistance, and negligible charge transfer resistance, indicating ion movement through a Warburg diffusion process. Additionally, in terms of complex behavior (electrochemical impedance spectroscopy), the PLA/EG's actual capacitance C'(ω) displayed a value greater than 1000 μF cm , highlighting the composite's effectiveness in storing charge. These results demonstrate that PLA/EG composites hold significant promise as electrodes in electronic devices. The methodology used in this study not only provides a practical way to create functional composites but also opens doors for new applications in electronics and energy storage.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16223131</identifier><identifier>PMID: 39599222</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; 3D printing ; Adsorption ; Biopolymers ; Capacitance ; Carbon black ; Composite materials ; Diffraction ; Diffusion barriers ; Electric properties ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Electrolytes ; Energy management systems ; Energy storage ; Fourier transforms ; Graphite ; Infrared analysis ; Infrared spectroscopy ; Polylactic acid ; Potassium ; Scanning electron microscopy ; Sensors ; Single screw extruders ; Spectroscopic analysis ; Spectrum analysis ; Thermal cycling ; Thermodynamic properties ; Thermogravimetric analysis ; Three dimensional composites ; Three dimensional printing ; Voltammetry ; X-rays</subject><ispartof>Polymers, 2024-11, Vol.16 (22), p.3131</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-ff12d48cf94818d215d4392a950b0cf9dd6da3508180e912c26b747ca968ab4c3</cites><orcidid>0000-0002-5691-1378 ; 0000-0002-0204-2779 ; 0000-0003-1156-0196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598161/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598161/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39599222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dos Santos, Ananias Lima</creatorcontrib><creatorcontrib>de Souza, Francisco Cezar Ramos</creatorcontrib><creatorcontrib>Martins da Costa, João Carlos</creatorcontrib><creatorcontrib>Gonçalves, Daniel Araújo</creatorcontrib><creatorcontrib>Passos, Raimundo Ribeiro</creatorcontrib><creatorcontrib>Pocrifka, Leandro Aparecido</creatorcontrib><title>Development and Characterization of 3D-Printed PLA/Exfoliated Graphite Composites for Enhanced Electrochemical Performance in Energy Storage Applications</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This research introduces a new way to create a composite material (PLA/EG) for 3D printing. It combines polylactic acid (PLA) with exfoliated graphite (EG) using a physical mixing method, followed by direct mixing in a single-screw extruder. Structural and vibrational analyses using X-ray diffraction and Fourier transform infrared spectroscopy confirmed the PLA/EG's formation (composite). The analysis also suggests physical adsorption as the primary interaction between the two materials. The exfoliated graphite acts as a barrier (thermal behavior), reducing heat transfer via TG. Electrochemical measurements reveal redox activity (cyclic voltammetry) with a specific capacitance of ~ 6 F g , low solution resistance, and negligible charge transfer resistance, indicating ion movement through a Warburg diffusion process. Additionally, in terms of complex behavior (electrochemical impedance spectroscopy), the PLA/EG's actual capacitance C'(ω) displayed a value greater than 1000 μF cm , highlighting the composite's effectiveness in storing charge. These results demonstrate that PLA/EG composites hold significant promise as electrodes in electronic devices. The methodology used in this study not only provides a practical way to create functional composites but also opens doors for new applications in electronics and energy storage.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Adsorption</subject><subject>Biopolymers</subject><subject>Capacitance</subject><subject>Carbon black</subject><subject>Composite materials</subject><subject>Diffraction</subject><subject>Diffusion barriers</subject><subject>Electric properties</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy management systems</subject><subject>Energy storage</subject><subject>Fourier transforms</subject><subject>Graphite</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Polylactic acid</subject><subject>Potassium</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>Single screw extruders</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Thermal cycling</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Voltammetry</subject><subject>X-rays</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkktv1DAQgCMEolXpkSuyxIVLWr_ixCe02m4L0kqsBJwtr-NsXDl2sLNVl3_Cv-2ELVWLffDY883TUxTvCb5gTOLLMfrDQASljDDyqjiluGYlZwK_fiafFOc532JYvBKC1G-LEyYrKSmlp8WfK3tnfRwHGyakQ4uWvU7aTDa533pyMaDYIXZVbpILk23RZr24XN130Ts9X2-SHns3WbSMwxgzSBl1MaFV6HUwAKy8NVOKpreDM9qjjU2gH2YlcgE4m3YH9H2KSe8sWoyjB2yOm98Vbzrtsz1_PM-Kn9erH8sv5frbzdflYl0ahulUdh2hLW9MJ3lDmpaSquVMUi0rvMXw2rai1azCoMRWEmqo2Na8NlqKRm-5YWfF56Pfcb8dbGugEUl7NSY36HRQUTv1UhNcr3bxThFSyYYIAh4-PXpI8dfe5kkNLhvrvQ427rOCz2FcQPsloB__Q2_jPgWo7y8FedY1B-riSO20t8qFLkJgA7uduxiD7Ry8L6AkLhpe1WBQHg1Mijkn2z2lT7CaJ0W9mBTgPzyv-Yn-NxfsAcibvGc</recordid><startdate>20241109</startdate><enddate>20241109</enddate><creator>Dos Santos, Ananias Lima</creator><creator>de Souza, Francisco Cezar Ramos</creator><creator>Martins da Costa, João Carlos</creator><creator>Gonçalves, Daniel Araújo</creator><creator>Passos, Raimundo Ribeiro</creator><creator>Pocrifka, Leandro Aparecido</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5691-1378</orcidid><orcidid>https://orcid.org/0000-0002-0204-2779</orcidid><orcidid>https://orcid.org/0000-0003-1156-0196</orcidid></search><sort><creationdate>20241109</creationdate><title>Development and Characterization of 3D-Printed PLA/Exfoliated Graphite Composites for Enhanced Electrochemical Performance in Energy Storage Applications</title><author>Dos Santos, Ananias Lima ; de Souza, Francisco Cezar Ramos ; Martins da Costa, João Carlos ; Gonçalves, Daniel Araújo ; Passos, Raimundo Ribeiro ; Pocrifka, Leandro Aparecido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-ff12d48cf94818d215d4392a950b0cf9dd6da3508180e912c26b747ca968ab4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Adsorption</topic><topic>Biopolymers</topic><topic>Capacitance</topic><topic>Carbon black</topic><topic>Composite materials</topic><topic>Diffraction</topic><topic>Diffusion barriers</topic><topic>Electric properties</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy management systems</topic><topic>Energy storage</topic><topic>Fourier transforms</topic><topic>Graphite</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Polylactic acid</topic><topic>Potassium</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>Single screw extruders</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Thermal cycling</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Voltammetry</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dos Santos, Ananias Lima</creatorcontrib><creatorcontrib>de Souza, Francisco Cezar Ramos</creatorcontrib><creatorcontrib>Martins da Costa, João Carlos</creatorcontrib><creatorcontrib>Gonçalves, Daniel Araújo</creatorcontrib><creatorcontrib>Passos, Raimundo Ribeiro</creatorcontrib><creatorcontrib>Pocrifka, Leandro Aparecido</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dos Santos, Ananias Lima</au><au>de Souza, Francisco Cezar Ramos</au><au>Martins da Costa, João Carlos</au><au>Gonçalves, Daniel Araújo</au><au>Passos, Raimundo Ribeiro</au><au>Pocrifka, Leandro Aparecido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Characterization of 3D-Printed PLA/Exfoliated Graphite Composites for Enhanced Electrochemical Performance in Energy Storage Applications</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-11-09</date><risdate>2024</risdate><volume>16</volume><issue>22</issue><spage>3131</spage><pages>3131-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This research introduces a new way to create a composite material (PLA/EG) for 3D printing. It combines polylactic acid (PLA) with exfoliated graphite (EG) using a physical mixing method, followed by direct mixing in a single-screw extruder. Structural and vibrational analyses using X-ray diffraction and Fourier transform infrared spectroscopy confirmed the PLA/EG's formation (composite). The analysis also suggests physical adsorption as the primary interaction between the two materials. The exfoliated graphite acts as a barrier (thermal behavior), reducing heat transfer via TG. Electrochemical measurements reveal redox activity (cyclic voltammetry) with a specific capacitance of ~ 6 F g , low solution resistance, and negligible charge transfer resistance, indicating ion movement through a Warburg diffusion process. Additionally, in terms of complex behavior (electrochemical impedance spectroscopy), the PLA/EG's actual capacitance C'(ω) displayed a value greater than 1000 μF cm , highlighting the composite's effectiveness in storing charge. These results demonstrate that PLA/EG composites hold significant promise as electrodes in electronic devices. The methodology used in this study not only provides a practical way to create functional composites but also opens doors for new applications in electronics and energy storage.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39599222</pmid><doi>10.3390/polym16223131</doi><orcidid>https://orcid.org/0000-0002-5691-1378</orcidid><orcidid>https://orcid.org/0000-0002-0204-2779</orcidid><orcidid>https://orcid.org/0000-0003-1156-0196</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2024-11, Vol.16 (22), p.3131
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11598161
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects 3-D printers
3D printing
Adsorption
Biopolymers
Capacitance
Carbon black
Composite materials
Diffraction
Diffusion barriers
Electric properties
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrochemistry
Electrodes
Electrolytes
Energy management systems
Energy storage
Fourier transforms
Graphite
Infrared analysis
Infrared spectroscopy
Polylactic acid
Potassium
Scanning electron microscopy
Sensors
Single screw extruders
Spectroscopic analysis
Spectrum analysis
Thermal cycling
Thermodynamic properties
Thermogravimetric analysis
Three dimensional composites
Three dimensional printing
Voltammetry
X-rays
title Development and Characterization of 3D-Printed PLA/Exfoliated Graphite Composites for Enhanced Electrochemical Performance in Energy Storage Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Characterization%20of%203D-Printed%20PLA/Exfoliated%20Graphite%20Composites%20for%20Enhanced%20Electrochemical%20Performance%20in%20Energy%20Storage%20Applications&rft.jtitle=Polymers&rft.au=Dos%20Santos,%20Ananias%20Lima&rft.date=2024-11-09&rft.volume=16&rft.issue=22&rft.spage=3131&rft.pages=3131-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16223131&rft_dat=%3Cgale_pubme%3EA818468457%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133350774&rft_id=info:pmid/39599222&rft_galeid=A818468457&rfr_iscdi=true