Analysis of Vibration Characteristics for Rotating Braided Fiber-Reinforced Composite Annular Plates with Perforations

In the current study, a comprehensive numerical model for analyzing the vibrational characteristics of braided fiber-reinforced composite (BFRC) rotating annular plate with perforations under diverse boundary constraints was introduced. This model employs the differential quadrature finite element m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-11, Vol.17 (22), p.5402
Hauptverfasser: Zhang, Haibiao, Li, Zhen, Wang, Shixun, Liu, Tao, Wang, Qingshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 5402
container_title Materials
container_volume 17
creator Zhang, Haibiao
Li, Zhen
Wang, Shixun
Liu, Tao
Wang, Qingshan
description In the current study, a comprehensive numerical model for analyzing the vibrational characteristics of braided fiber-reinforced composite (BFRC) rotating annular plate with perforations under diverse boundary constraints was introduced. This model employs the differential quadrature finite element method (DQFEM), which was developed based on the first-order shear deformation theory (FSDT) and coordinate transformation approach. The BFRC material, specifically a two-dimensional biaxial orthogonal fabric, was utilized to fabricate the annular plate with two distinct types of holes: circular and sector-shaped. The model's convergence, accuracy, numerical stability, and reliability were confirmed through comparative assessments utilizing data from the literature, from ABAQUS software, and from experimental findings. The analysis focuses on studying the influences of structural properties, material parameters, and boundary restraints on the frequencies of vibration for BFRC rotating annular plates with holes. This theoretical model helps provide scientific basis and technical guidance for the stability and lightweight design of rotating annular plates, such as rotor structures in aircraft engines.
doi_str_mv 10.3390/ma17225402
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11595680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818339680</galeid><sourcerecordid>A818339680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-dbde2b362b0cb80203b78bcc58ef6450471bc68858199123b2276326c0b871ff3</originalsourceid><addsrcrecordid>eNpdkl1vFCEUhomxsU3tjT_AkHhjTKbyMcwwV2a7adWkiU2j3hJgzuzSzMAKTE3_fdlOrVW4gJzznJfzAUJvKDnlvCMfJ01bxkRN2At0RLuuqWhX1y-f3Q_RSUo3pCzOqWTdK3TIO9Hto47Q7crr8S65hMOAfzoTdXbB4_VWR20zRJeyswkPIeLrkIvTb_BZ1K6HHl84A7G6BueL2xbDOky7kFwGvPJ-HnXEV6POkPBvl7f4CmLhHvTTa3Qw6DHByeN5jH5cnH9ff6kuv33-ul5dVpZzkave9MAMb5gh1kjCCDetNNYKCUNTC1K31NhGSiFLtZRxw1jbcNZYYmRLh4Efo0-L7m42E_QWfI56VLvoJh3vVNBO_evxbqs24VZRKjrRSFIU3j8qxPBrhpTV5JKFcdQewpwUp5zXQspGFPTdf-hNmGPp70Lxuu5kW6jThdroEdS-d-VhW3YPk7PBw-CKfSWpLPNdMviwBNgYUoowPKVPidr_AfX3DxT47fOCn9A_E-f3NvCs_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133344987</pqid></control><display><type>article</type><title>Analysis of Vibration Characteristics for Rotating Braided Fiber-Reinforced Composite Annular Plates with Perforations</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Zhang, Haibiao ; Li, Zhen ; Wang, Shixun ; Liu, Tao ; Wang, Qingshan</creator><creatorcontrib>Zhang, Haibiao ; Li, Zhen ; Wang, Shixun ; Liu, Tao ; Wang, Qingshan</creatorcontrib><description>In the current study, a comprehensive numerical model for analyzing the vibrational characteristics of braided fiber-reinforced composite (BFRC) rotating annular plate with perforations under diverse boundary constraints was introduced. This model employs the differential quadrature finite element method (DQFEM), which was developed based on the first-order shear deformation theory (FSDT) and coordinate transformation approach. The BFRC material, specifically a two-dimensional biaxial orthogonal fabric, was utilized to fabricate the annular plate with two distinct types of holes: circular and sector-shaped. The model's convergence, accuracy, numerical stability, and reliability were confirmed through comparative assessments utilizing data from the literature, from ABAQUS software, and from experimental findings. The analysis focuses on studying the influences of structural properties, material parameters, and boundary restraints on the frequencies of vibration for BFRC rotating annular plates with holes. This theoretical model helps provide scientific basis and technical guidance for the stability and lightweight design of rotating annular plates, such as rotor structures in aircraft engines.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17225402</identifier><identifier>PMID: 39597225</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aircraft engines ; Aircraft guidance ; Aircraft vibration ; Annular plates ; Boundary conditions ; Braided composites ; Braiding ; Composite materials ; Coordinate transformations ; Deformation ; Energy ; Fiber composites ; Finite element analysis ; Finite element method ; Investigations ; Mathematical analysis ; Mathematical models ; Numerical models ; Numerical stability ; Quadratures ; Rotation ; Shear deformation ; Shear strain ; Software reliability ; Stability ; Vibration analysis</subject><ispartof>Materials, 2024-11, Vol.17 (22), p.5402</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-dbde2b362b0cb80203b78bcc58ef6450471bc68858199123b2276326c0b871ff3</cites><orcidid>0000-0002-4557-9349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595680/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595680/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39597225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Haibiao</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Wang, Shixun</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Wang, Qingshan</creatorcontrib><title>Analysis of Vibration Characteristics for Rotating Braided Fiber-Reinforced Composite Annular Plates with Perforations</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In the current study, a comprehensive numerical model for analyzing the vibrational characteristics of braided fiber-reinforced composite (BFRC) rotating annular plate with perforations under diverse boundary constraints was introduced. This model employs the differential quadrature finite element method (DQFEM), which was developed based on the first-order shear deformation theory (FSDT) and coordinate transformation approach. The BFRC material, specifically a two-dimensional biaxial orthogonal fabric, was utilized to fabricate the annular plate with two distinct types of holes: circular and sector-shaped. The model's convergence, accuracy, numerical stability, and reliability were confirmed through comparative assessments utilizing data from the literature, from ABAQUS software, and from experimental findings. The analysis focuses on studying the influences of structural properties, material parameters, and boundary restraints on the frequencies of vibration for BFRC rotating annular plates with holes. This theoretical model helps provide scientific basis and technical guidance for the stability and lightweight design of rotating annular plates, such as rotor structures in aircraft engines.</description><subject>Aircraft engines</subject><subject>Aircraft guidance</subject><subject>Aircraft vibration</subject><subject>Annular plates</subject><subject>Boundary conditions</subject><subject>Braided composites</subject><subject>Braiding</subject><subject>Composite materials</subject><subject>Coordinate transformations</subject><subject>Deformation</subject><subject>Energy</subject><subject>Fiber composites</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Numerical stability</subject><subject>Quadratures</subject><subject>Rotation</subject><subject>Shear deformation</subject><subject>Shear strain</subject><subject>Software reliability</subject><subject>Stability</subject><subject>Vibration analysis</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkl1vFCEUhomxsU3tjT_AkHhjTKbyMcwwV2a7adWkiU2j3hJgzuzSzMAKTE3_fdlOrVW4gJzznJfzAUJvKDnlvCMfJ01bxkRN2At0RLuuqWhX1y-f3Q_RSUo3pCzOqWTdK3TIO9Hto47Q7crr8S65hMOAfzoTdXbB4_VWR20zRJeyswkPIeLrkIvTb_BZ1K6HHl84A7G6BueL2xbDOky7kFwGvPJ-HnXEV6POkPBvl7f4CmLhHvTTa3Qw6DHByeN5jH5cnH9ff6kuv33-ul5dVpZzkave9MAMb5gh1kjCCDetNNYKCUNTC1K31NhGSiFLtZRxw1jbcNZYYmRLh4Efo0-L7m42E_QWfI56VLvoJh3vVNBO_evxbqs24VZRKjrRSFIU3j8qxPBrhpTV5JKFcdQewpwUp5zXQspGFPTdf-hNmGPp70Lxuu5kW6jThdroEdS-d-VhW3YPk7PBw-CKfSWpLPNdMviwBNgYUoowPKVPidr_AfX3DxT47fOCn9A_E-f3NvCs_A</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Zhang, Haibiao</creator><creator>Li, Zhen</creator><creator>Wang, Shixun</creator><creator>Liu, Tao</creator><creator>Wang, Qingshan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4557-9349</orcidid></search><sort><creationdate>20241105</creationdate><title>Analysis of Vibration Characteristics for Rotating Braided Fiber-Reinforced Composite Annular Plates with Perforations</title><author>Zhang, Haibiao ; Li, Zhen ; Wang, Shixun ; Liu, Tao ; Wang, Qingshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-dbde2b362b0cb80203b78bcc58ef6450471bc68858199123b2276326c0b871ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aircraft engines</topic><topic>Aircraft guidance</topic><topic>Aircraft vibration</topic><topic>Annular plates</topic><topic>Boundary conditions</topic><topic>Braided composites</topic><topic>Braiding</topic><topic>Composite materials</topic><topic>Coordinate transformations</topic><topic>Deformation</topic><topic>Energy</topic><topic>Fiber composites</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Numerical stability</topic><topic>Quadratures</topic><topic>Rotation</topic><topic>Shear deformation</topic><topic>Shear strain</topic><topic>Software reliability</topic><topic>Stability</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haibiao</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Wang, Shixun</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Wang, Qingshan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Haibiao</au><au>Li, Zhen</au><au>Wang, Shixun</au><au>Liu, Tao</au><au>Wang, Qingshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Vibration Characteristics for Rotating Braided Fiber-Reinforced Composite Annular Plates with Perforations</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-11-05</date><risdate>2024</risdate><volume>17</volume><issue>22</issue><spage>5402</spage><pages>5402-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In the current study, a comprehensive numerical model for analyzing the vibrational characteristics of braided fiber-reinforced composite (BFRC) rotating annular plate with perforations under diverse boundary constraints was introduced. This model employs the differential quadrature finite element method (DQFEM), which was developed based on the first-order shear deformation theory (FSDT) and coordinate transformation approach. The BFRC material, specifically a two-dimensional biaxial orthogonal fabric, was utilized to fabricate the annular plate with two distinct types of holes: circular and sector-shaped. The model's convergence, accuracy, numerical stability, and reliability were confirmed through comparative assessments utilizing data from the literature, from ABAQUS software, and from experimental findings. The analysis focuses on studying the influences of structural properties, material parameters, and boundary restraints on the frequencies of vibration for BFRC rotating annular plates with holes. This theoretical model helps provide scientific basis and technical guidance for the stability and lightweight design of rotating annular plates, such as rotor structures in aircraft engines.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39597225</pmid><doi>10.3390/ma17225402</doi><orcidid>https://orcid.org/0000-0002-4557-9349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-11, Vol.17 (22), p.5402
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11595680
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Aircraft engines
Aircraft guidance
Aircraft vibration
Annular plates
Boundary conditions
Braided composites
Braiding
Composite materials
Coordinate transformations
Deformation
Energy
Fiber composites
Finite element analysis
Finite element method
Investigations
Mathematical analysis
Mathematical models
Numerical models
Numerical stability
Quadratures
Rotation
Shear deformation
Shear strain
Software reliability
Stability
Vibration analysis
title Analysis of Vibration Characteristics for Rotating Braided Fiber-Reinforced Composite Annular Plates with Perforations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Vibration%20Characteristics%20for%20Rotating%20Braided%20Fiber-Reinforced%20Composite%20Annular%20Plates%20with%20Perforations&rft.jtitle=Materials&rft.au=Zhang,%20Haibiao&rft.date=2024-11-05&rft.volume=17&rft.issue=22&rft.spage=5402&rft.pages=5402-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17225402&rft_dat=%3Cgale_pubme%3EA818339680%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133344987&rft_id=info:pmid/39597225&rft_galeid=A818339680&rfr_iscdi=true