Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri

This research study investigates and predicts the obesity prevalence in Missouri, utilizing deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of census tracts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2024-11, Vol.21 (11), p.1534
Hauptverfasser: Dahu, Butros M, Martinez-Villar, Carlos I, Toubal, Imad Eddine, Alshehri, Mariam, Ouadou, Anes, Khan, Solaiman, Sheets, Lincoln R, Scott, Grant J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1534
container_title International journal of environmental research and public health
container_volume 21
creator Dahu, Butros M
Martinez-Villar, Carlos I
Toubal, Imad Eddine
Alshehri, Mariam
Ouadou, Anes
Khan, Solaiman
Sheets, Lincoln R
Scott, Grant J
description This research study investigates and predicts the obesity prevalence in Missouri, utilizing deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of census tracts based on visual features in the satellite imagery that covers each tract. The study utilizes Sentinel-2 satellite images, processed using the ResNet-50 DCNN, to extract deep neural visual features (DNVF). Obesity prevalence data, sourced from the CDC's 2022 estimates, is analyzed at the census tract level. The datasets were integrated to apply a machine learning model to predict the obesity rates in 1052 different census tracts in Missouri. The analysis reveals significant associations between DNVF and obesity prevalence. The predictive models show moderate success in estimating and predicting obesity rates in various census tracts within Missouri. The study emphasizes the potential of using satellite imagery and advanced machine learning in public health research. It points to environmental factors as significant determinants of obesity, suggesting the need for targeted health interventions. Employing DNVF to explore and predict obesity rates offers valuable insights for public health strategies and calls for expanded research in diverse geographical contexts.
doi_str_mv 10.3390/ijerph21111534
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11594122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133457018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1792-6a2d4406e8dc18d9c7b22ce87b3a7adbf04f06a79f5bae1d09dfbf0f849b3ae83</originalsourceid><addsrcrecordid>eNpdkUtvGyEUhVGVqnm02y4rpGyycQID82BVWUnzkOyki7ZbxMAlxhrDFGYi5d-XiRPLKZuLuB_ncjgIfaXknDFBLtwaYr8qaF4l4x_QEa0qMuMVoQd7-0N0nNKaENbwSnxCh0yUomwIPUJp3ved02pwweNg8VLplfOAF6Cid_4RK2_wFUCP72GMqsN_XBpzuQY1jBEStiHinxGM08OEz83YDfihheSG56nxpDrwGrDzeOlSCmN0n9FHq7oEX17rCfp9_ePX5e1s8XBzdzlfzDStRTGrVGE4JxU0RtPGCF23RaGhqVumamVaS7gllaqFLVsF1BBhbD60DReZgIadoO9b3X5sN2A0-CE7kH10GxWfZVBOvu94t5KP4UnmvxScFkVWOHtViOHvCGmQG5c0dJ3yEMYkGWWMlzWh07DT_9B19uqzvxeK8Kbkk-D5ltIxpBTB7l5DiZwCle8DzRe-7XvY4W8Jsn-QwJ88</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133048542</pqid></control><display><type>article</type><title>Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri</title><source>PubMed Central Free</source><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Dahu, Butros M ; Martinez-Villar, Carlos I ; Toubal, Imad Eddine ; Alshehri, Mariam ; Ouadou, Anes ; Khan, Solaiman ; Sheets, Lincoln R ; Scott, Grant J</creator><creatorcontrib>Dahu, Butros M ; Martinez-Villar, Carlos I ; Toubal, Imad Eddine ; Alshehri, Mariam ; Ouadou, Anes ; Khan, Solaiman ; Sheets, Lincoln R ; Scott, Grant J</creatorcontrib><description>This research study investigates and predicts the obesity prevalence in Missouri, utilizing deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of census tracts based on visual features in the satellite imagery that covers each tract. The study utilizes Sentinel-2 satellite images, processed using the ResNet-50 DCNN, to extract deep neural visual features (DNVF). Obesity prevalence data, sourced from the CDC's 2022 estimates, is analyzed at the census tract level. The datasets were integrated to apply a machine learning model to predict the obesity rates in 1052 different census tracts in Missouri. The analysis reveals significant associations between DNVF and obesity prevalence. The predictive models show moderate success in estimating and predicting obesity rates in various census tracts within Missouri. The study emphasizes the potential of using satellite imagery and advanced machine learning in public health research. It points to environmental factors as significant determinants of obesity, suggesting the need for targeted health interventions. Employing DNVF to explore and predict obesity rates offers valuable insights for public health strategies and calls for expanded research in diverse geographical contexts.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph21111534</identifier><identifier>PMID: 39595801</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adult ; Adults ; Algorithms ; Artificial intelligence ; Built environment ; Censuses ; Datasets ; Deep learning ; Exercise ; Female ; Generalized linear models ; Humans ; Machine Learning ; Male ; Missouri - epidemiology ; Neural networks ; Neural Networks, Computer ; Obesity ; Obesity - epidemiology ; Prevalence ; Public health ; Satellite Imagery</subject><ispartof>International journal of environmental research and public health, 2024-11, Vol.21 (11), p.1534</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1792-6a2d4406e8dc18d9c7b22ce87b3a7adbf04f06a79f5bae1d09dfbf0f849b3ae83</cites><orcidid>0000-0001-5880-2450 ; 0000-0002-4035-7771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594122/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594122/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39595801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahu, Butros M</creatorcontrib><creatorcontrib>Martinez-Villar, Carlos I</creatorcontrib><creatorcontrib>Toubal, Imad Eddine</creatorcontrib><creatorcontrib>Alshehri, Mariam</creatorcontrib><creatorcontrib>Ouadou, Anes</creatorcontrib><creatorcontrib>Khan, Solaiman</creatorcontrib><creatorcontrib>Sheets, Lincoln R</creatorcontrib><creatorcontrib>Scott, Grant J</creatorcontrib><title>Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>This research study investigates and predicts the obesity prevalence in Missouri, utilizing deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of census tracts based on visual features in the satellite imagery that covers each tract. The study utilizes Sentinel-2 satellite images, processed using the ResNet-50 DCNN, to extract deep neural visual features (DNVF). Obesity prevalence data, sourced from the CDC's 2022 estimates, is analyzed at the census tract level. The datasets were integrated to apply a machine learning model to predict the obesity rates in 1052 different census tracts in Missouri. The analysis reveals significant associations between DNVF and obesity prevalence. The predictive models show moderate success in estimating and predicting obesity rates in various census tracts within Missouri. The study emphasizes the potential of using satellite imagery and advanced machine learning in public health research. It points to environmental factors as significant determinants of obesity, suggesting the need for targeted health interventions. Employing DNVF to explore and predict obesity rates offers valuable insights for public health strategies and calls for expanded research in diverse geographical contexts.</description><subject>Adult</subject><subject>Adults</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Built environment</subject><subject>Censuses</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Exercise</subject><subject>Female</subject><subject>Generalized linear models</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Missouri - epidemiology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Obesity</subject><subject>Obesity - epidemiology</subject><subject>Prevalence</subject><subject>Public health</subject><subject>Satellite Imagery</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtvGyEUhVGVqnm02y4rpGyycQID82BVWUnzkOyki7ZbxMAlxhrDFGYi5d-XiRPLKZuLuB_ncjgIfaXknDFBLtwaYr8qaF4l4x_QEa0qMuMVoQd7-0N0nNKaENbwSnxCh0yUomwIPUJp3ved02pwweNg8VLplfOAF6Cid_4RK2_wFUCP72GMqsN_XBpzuQY1jBEStiHinxGM08OEz83YDfihheSG56nxpDrwGrDzeOlSCmN0n9FHq7oEX17rCfp9_ePX5e1s8XBzdzlfzDStRTGrVGE4JxU0RtPGCF23RaGhqVumamVaS7gllaqFLVsF1BBhbD60DReZgIadoO9b3X5sN2A0-CE7kH10GxWfZVBOvu94t5KP4UnmvxScFkVWOHtViOHvCGmQG5c0dJ3yEMYkGWWMlzWh07DT_9B19uqzvxeK8Kbkk-D5ltIxpBTB7l5DiZwCle8DzRe-7XvY4W8Jsn-QwJ88</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Dahu, Butros M</creator><creator>Martinez-Villar, Carlos I</creator><creator>Toubal, Imad Eddine</creator><creator>Alshehri, Mariam</creator><creator>Ouadou, Anes</creator><creator>Khan, Solaiman</creator><creator>Sheets, Lincoln R</creator><creator>Scott, Grant J</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5880-2450</orcidid><orcidid>https://orcid.org/0000-0002-4035-7771</orcidid></search><sort><creationdate>20241119</creationdate><title>Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri</title><author>Dahu, Butros M ; Martinez-Villar, Carlos I ; Toubal, Imad Eddine ; Alshehri, Mariam ; Ouadou, Anes ; Khan, Solaiman ; Sheets, Lincoln R ; Scott, Grant J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1792-6a2d4406e8dc18d9c7b22ce87b3a7adbf04f06a79f5bae1d09dfbf0f849b3ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Adults</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Built environment</topic><topic>Censuses</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Exercise</topic><topic>Female</topic><topic>Generalized linear models</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Missouri - epidemiology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Obesity</topic><topic>Obesity - epidemiology</topic><topic>Prevalence</topic><topic>Public health</topic><topic>Satellite Imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahu, Butros M</creatorcontrib><creatorcontrib>Martinez-Villar, Carlos I</creatorcontrib><creatorcontrib>Toubal, Imad Eddine</creatorcontrib><creatorcontrib>Alshehri, Mariam</creatorcontrib><creatorcontrib>Ouadou, Anes</creatorcontrib><creatorcontrib>Khan, Solaiman</creatorcontrib><creatorcontrib>Sheets, Lincoln R</creatorcontrib><creatorcontrib>Scott, Grant J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahu, Butros M</au><au>Martinez-Villar, Carlos I</au><au>Toubal, Imad Eddine</au><au>Alshehri, Mariam</au><au>Ouadou, Anes</au><au>Khan, Solaiman</au><au>Sheets, Lincoln R</au><au>Scott, Grant J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2024-11-19</date><risdate>2024</risdate><volume>21</volume><issue>11</issue><spage>1534</spage><pages>1534-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>This research study investigates and predicts the obesity prevalence in Missouri, utilizing deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of census tracts based on visual features in the satellite imagery that covers each tract. The study utilizes Sentinel-2 satellite images, processed using the ResNet-50 DCNN, to extract deep neural visual features (DNVF). Obesity prevalence data, sourced from the CDC's 2022 estimates, is analyzed at the census tract level. The datasets were integrated to apply a machine learning model to predict the obesity rates in 1052 different census tracts in Missouri. The analysis reveals significant associations between DNVF and obesity prevalence. The predictive models show moderate success in estimating and predicting obesity rates in various census tracts within Missouri. The study emphasizes the potential of using satellite imagery and advanced machine learning in public health research. It points to environmental factors as significant determinants of obesity, suggesting the need for targeted health interventions. Employing DNVF to explore and predict obesity rates offers valuable insights for public health strategies and calls for expanded research in diverse geographical contexts.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39595801</pmid><doi>10.3390/ijerph21111534</doi><orcidid>https://orcid.org/0000-0001-5880-2450</orcidid><orcidid>https://orcid.org/0000-0002-4035-7771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2024-11, Vol.21 (11), p.1534
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11594122
source PubMed Central Free; MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Adult
Adults
Algorithms
Artificial intelligence
Built environment
Censuses
Datasets
Deep learning
Exercise
Female
Generalized linear models
Humans
Machine Learning
Male
Missouri - epidemiology
Neural networks
Neural Networks, Computer
Obesity
Obesity - epidemiology
Prevalence
Public health
Satellite Imagery
title Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Machine%20Learning%20and%20Deep%20Neural%20Visual%20Features%20for%20Predicting%20Adult%20Obesity%20Prevalence%20in%20Missouri&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Dahu,%20Butros%20M&rft.date=2024-11-19&rft.volume=21&rft.issue=11&rft.spage=1534&rft.pages=1534-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph21111534&rft_dat=%3Cproquest_pubme%3E3133457018%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133048542&rft_id=info:pmid/39595801&rfr_iscdi=true