Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri
This research study investigates and predicts the obesity prevalence in Missouri, utilizing deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of census tracts...
Gespeichert in:
Veröffentlicht in: | International journal of environmental research and public health 2024-11, Vol.21 (11), p.1534 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1534 |
container_title | International journal of environmental research and public health |
container_volume | 21 |
creator | Dahu, Butros M Martinez-Villar, Carlos I Toubal, Imad Eddine Alshehri, Mariam Ouadou, Anes Khan, Solaiman Sheets, Lincoln R Scott, Grant J |
description | This research study investigates and predicts the obesity prevalence in Missouri, utilizing deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of census tracts based on visual features in the satellite imagery that covers each tract. The study utilizes Sentinel-2 satellite images, processed using the ResNet-50 DCNN, to extract deep neural visual features (DNVF). Obesity prevalence data, sourced from the CDC's 2022 estimates, is analyzed at the census tract level. The datasets were integrated to apply a machine learning model to predict the obesity rates in 1052 different census tracts in Missouri. The analysis reveals significant associations between DNVF and obesity prevalence. The predictive models show moderate success in estimating and predicting obesity rates in various census tracts within Missouri. The study emphasizes the potential of using satellite imagery and advanced machine learning in public health research. It points to environmental factors as significant determinants of obesity, suggesting the need for targeted health interventions. Employing DNVF to explore and predict obesity rates offers valuable insights for public health strategies and calls for expanded research in diverse geographical contexts. |
doi_str_mv | 10.3390/ijerph21111534 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11594122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133457018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1792-6a2d4406e8dc18d9c7b22ce87b3a7adbf04f06a79f5bae1d09dfbf0f849b3ae83</originalsourceid><addsrcrecordid>eNpdkUtvGyEUhVGVqnm02y4rpGyycQID82BVWUnzkOyki7ZbxMAlxhrDFGYi5d-XiRPLKZuLuB_ncjgIfaXknDFBLtwaYr8qaF4l4x_QEa0qMuMVoQd7-0N0nNKaENbwSnxCh0yUomwIPUJp3ved02pwweNg8VLplfOAF6Cid_4RK2_wFUCP72GMqsN_XBpzuQY1jBEStiHinxGM08OEz83YDfihheSG56nxpDrwGrDzeOlSCmN0n9FHq7oEX17rCfp9_ePX5e1s8XBzdzlfzDStRTGrVGE4JxU0RtPGCF23RaGhqVumamVaS7gllaqFLVsF1BBhbD60DReZgIadoO9b3X5sN2A0-CE7kH10GxWfZVBOvu94t5KP4UnmvxScFkVWOHtViOHvCGmQG5c0dJ3yEMYkGWWMlzWh07DT_9B19uqzvxeK8Kbkk-D5ltIxpBTB7l5DiZwCle8DzRe-7XvY4W8Jsn-QwJ88</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133048542</pqid></control><display><type>article</type><title>Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri</title><source>PubMed Central Free</source><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Dahu, Butros M ; Martinez-Villar, Carlos I ; Toubal, Imad Eddine ; Alshehri, Mariam ; Ouadou, Anes ; Khan, Solaiman ; Sheets, Lincoln R ; Scott, Grant J</creator><creatorcontrib>Dahu, Butros M ; Martinez-Villar, Carlos I ; Toubal, Imad Eddine ; Alshehri, Mariam ; Ouadou, Anes ; Khan, Solaiman ; Sheets, Lincoln R ; Scott, Grant J</creatorcontrib><description>This research study investigates and predicts the obesity prevalence in Missouri, utilizing deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of census tracts based on visual features in the satellite imagery that covers each tract. The study utilizes Sentinel-2 satellite images, processed using the ResNet-50 DCNN, to extract deep neural visual features (DNVF). Obesity prevalence data, sourced from the CDC's 2022 estimates, is analyzed at the census tract level. The datasets were integrated to apply a machine learning model to predict the obesity rates in 1052 different census tracts in Missouri. The analysis reveals significant associations between DNVF and obesity prevalence. The predictive models show moderate success in estimating and predicting obesity rates in various census tracts within Missouri. The study emphasizes the potential of using satellite imagery and advanced machine learning in public health research. It points to environmental factors as significant determinants of obesity, suggesting the need for targeted health interventions. Employing DNVF to explore and predict obesity rates offers valuable insights for public health strategies and calls for expanded research in diverse geographical contexts.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph21111534</identifier><identifier>PMID: 39595801</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adult ; Adults ; Algorithms ; Artificial intelligence ; Built environment ; Censuses ; Datasets ; Deep learning ; Exercise ; Female ; Generalized linear models ; Humans ; Machine Learning ; Male ; Missouri - epidemiology ; Neural networks ; Neural Networks, Computer ; Obesity ; Obesity - epidemiology ; Prevalence ; Public health ; Satellite Imagery</subject><ispartof>International journal of environmental research and public health, 2024-11, Vol.21 (11), p.1534</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1792-6a2d4406e8dc18d9c7b22ce87b3a7adbf04f06a79f5bae1d09dfbf0f849b3ae83</cites><orcidid>0000-0001-5880-2450 ; 0000-0002-4035-7771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594122/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594122/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39595801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahu, Butros M</creatorcontrib><creatorcontrib>Martinez-Villar, Carlos I</creatorcontrib><creatorcontrib>Toubal, Imad Eddine</creatorcontrib><creatorcontrib>Alshehri, Mariam</creatorcontrib><creatorcontrib>Ouadou, Anes</creatorcontrib><creatorcontrib>Khan, Solaiman</creatorcontrib><creatorcontrib>Sheets, Lincoln R</creatorcontrib><creatorcontrib>Scott, Grant J</creatorcontrib><title>Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>This research study investigates and predicts the obesity prevalence in Missouri, utilizing deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of census tracts based on visual features in the satellite imagery that covers each tract. The study utilizes Sentinel-2 satellite images, processed using the ResNet-50 DCNN, to extract deep neural visual features (DNVF). Obesity prevalence data, sourced from the CDC's 2022 estimates, is analyzed at the census tract level. The datasets were integrated to apply a machine learning model to predict the obesity rates in 1052 different census tracts in Missouri. The analysis reveals significant associations between DNVF and obesity prevalence. The predictive models show moderate success in estimating and predicting obesity rates in various census tracts within Missouri. The study emphasizes the potential of using satellite imagery and advanced machine learning in public health research. It points to environmental factors as significant determinants of obesity, suggesting the need for targeted health interventions. Employing DNVF to explore and predict obesity rates offers valuable insights for public health strategies and calls for expanded research in diverse geographical contexts.</description><subject>Adult</subject><subject>Adults</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Built environment</subject><subject>Censuses</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Exercise</subject><subject>Female</subject><subject>Generalized linear models</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Missouri - epidemiology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Obesity</subject><subject>Obesity - epidemiology</subject><subject>Prevalence</subject><subject>Public health</subject><subject>Satellite Imagery</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtvGyEUhVGVqnm02y4rpGyycQID82BVWUnzkOyki7ZbxMAlxhrDFGYi5d-XiRPLKZuLuB_ncjgIfaXknDFBLtwaYr8qaF4l4x_QEa0qMuMVoQd7-0N0nNKaENbwSnxCh0yUomwIPUJp3ved02pwweNg8VLplfOAF6Cid_4RK2_wFUCP72GMqsN_XBpzuQY1jBEStiHinxGM08OEz83YDfihheSG56nxpDrwGrDzeOlSCmN0n9FHq7oEX17rCfp9_ePX5e1s8XBzdzlfzDStRTGrVGE4JxU0RtPGCF23RaGhqVumamVaS7gllaqFLVsF1BBhbD60DReZgIadoO9b3X5sN2A0-CE7kH10GxWfZVBOvu94t5KP4UnmvxScFkVWOHtViOHvCGmQG5c0dJ3yEMYkGWWMlzWh07DT_9B19uqzvxeK8Kbkk-D5ltIxpBTB7l5DiZwCle8DzRe-7XvY4W8Jsn-QwJ88</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Dahu, Butros M</creator><creator>Martinez-Villar, Carlos I</creator><creator>Toubal, Imad Eddine</creator><creator>Alshehri, Mariam</creator><creator>Ouadou, Anes</creator><creator>Khan, Solaiman</creator><creator>Sheets, Lincoln R</creator><creator>Scott, Grant J</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5880-2450</orcidid><orcidid>https://orcid.org/0000-0002-4035-7771</orcidid></search><sort><creationdate>20241119</creationdate><title>Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri</title><author>Dahu, Butros M ; Martinez-Villar, Carlos I ; Toubal, Imad Eddine ; Alshehri, Mariam ; Ouadou, Anes ; Khan, Solaiman ; Sheets, Lincoln R ; Scott, Grant J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1792-6a2d4406e8dc18d9c7b22ce87b3a7adbf04f06a79f5bae1d09dfbf0f849b3ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Adults</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Built environment</topic><topic>Censuses</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Exercise</topic><topic>Female</topic><topic>Generalized linear models</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Missouri - epidemiology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Obesity</topic><topic>Obesity - epidemiology</topic><topic>Prevalence</topic><topic>Public health</topic><topic>Satellite Imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahu, Butros M</creatorcontrib><creatorcontrib>Martinez-Villar, Carlos I</creatorcontrib><creatorcontrib>Toubal, Imad Eddine</creatorcontrib><creatorcontrib>Alshehri, Mariam</creatorcontrib><creatorcontrib>Ouadou, Anes</creatorcontrib><creatorcontrib>Khan, Solaiman</creatorcontrib><creatorcontrib>Sheets, Lincoln R</creatorcontrib><creatorcontrib>Scott, Grant J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahu, Butros M</au><au>Martinez-Villar, Carlos I</au><au>Toubal, Imad Eddine</au><au>Alshehri, Mariam</au><au>Ouadou, Anes</au><au>Khan, Solaiman</au><au>Sheets, Lincoln R</au><au>Scott, Grant J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2024-11-19</date><risdate>2024</risdate><volume>21</volume><issue>11</issue><spage>1534</spage><pages>1534-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>This research study investigates and predicts the obesity prevalence in Missouri, utilizing deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of census tracts based on visual features in the satellite imagery that covers each tract. The study utilizes Sentinel-2 satellite images, processed using the ResNet-50 DCNN, to extract deep neural visual features (DNVF). Obesity prevalence data, sourced from the CDC's 2022 estimates, is analyzed at the census tract level. The datasets were integrated to apply a machine learning model to predict the obesity rates in 1052 different census tracts in Missouri. The analysis reveals significant associations between DNVF and obesity prevalence. The predictive models show moderate success in estimating and predicting obesity rates in various census tracts within Missouri. The study emphasizes the potential of using satellite imagery and advanced machine learning in public health research. It points to environmental factors as significant determinants of obesity, suggesting the need for targeted health interventions. Employing DNVF to explore and predict obesity rates offers valuable insights for public health strategies and calls for expanded research in diverse geographical contexts.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39595801</pmid><doi>10.3390/ijerph21111534</doi><orcidid>https://orcid.org/0000-0001-5880-2450</orcidid><orcidid>https://orcid.org/0000-0002-4035-7771</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2024-11, Vol.21 (11), p.1534 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11594122 |
source | PubMed Central Free; MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Adult Adults Algorithms Artificial intelligence Built environment Censuses Datasets Deep learning Exercise Female Generalized linear models Humans Machine Learning Male Missouri - epidemiology Neural networks Neural Networks, Computer Obesity Obesity - epidemiology Prevalence Public health Satellite Imagery |
title | Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Machine%20Learning%20and%20Deep%20Neural%20Visual%20Features%20for%20Predicting%20Adult%20Obesity%20Prevalence%20in%20Missouri&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Dahu,%20Butros%20M&rft.date=2024-11-19&rft.volume=21&rft.issue=11&rft.spage=1534&rft.pages=1534-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph21111534&rft_dat=%3Cproquest_pubme%3E3133457018%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133048542&rft_id=info:pmid/39595801&rfr_iscdi=true |