CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8+ T cell formation
Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TR...
Gespeichert in:
Veröffentlicht in: | Immunity (Cambridge, Mass.) Mass.), 2024-11, Vol.57 (11), p.2597-2614.e13 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2614.e13 |
---|---|
container_issue | 11 |
container_start_page | 2597 |
container_title | Immunity (Cambridge, Mass.) |
container_volume | 57 |
creator | Raynor, Jana L. Collins, Nicholas Shi, Hao Guy, Cliff Saravia, Jordy Ah Lim, Seon Chapman, Nicole M. Zhou, Peipei Wang, Yan Sun, Yu Risch, Isabel Hu, Haoran KC, Anil Sun, Renqiang Shrestha, Sharad Huang, Hongling Connelly, Jon P. Pruett-Miller, Shondra M. Reina-Campos, Miguel Goldrath, Ananda W. Belkaid, Yasmine Chi, Hongbo |
description | Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes—Flcn, Ragulator, and Rag GTPases—inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor β (TGF-β)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity.
[Display omitted]
•Systematic discovery of mitochondrial and lysosomal pathways in CD8+ TRM formation•Lysosomal signaling and amino acids shape Tfeb-driven TRM development•Small intestine-specific TRM programming is impeded by the Flcn-Tfeb signaling axis•Acss1 and Mrpl52 empower early siIEL TRM formation in distinct contexts
How organelle signaling and metabolic adaptation orchestrate tissue-resident CD8+ T (TRM) cell development remains poorly defined. Here, Raynor et al. establish three nutrient-dependent lysosomal signaling nodes as negative regulators of TRM differentiation in the small intestine. These results uncover mechanisms dictating TRM cell quality and quantity for tissue immunity. |
doi_str_mv | 10.1016/j.immuni.2024.09.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11590283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761324004576</els_id><sourcerecordid>3117072973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2583-d082a9f0198120ca839709d7a2fbf2abee66034b6fdfc30cd307f22c6965e9fb3</originalsourceid><addsrcrecordid>eNp9kdtu1DAQhiMEoqXwBgj5EgkljO1sEt-A0HKqVAlUyrXltcetV7G92MlK-xC8A8_Ck-GwpYIbrjzy_PPP4auqpxQaCrR7uW2c93NwDQPWNiAaoPxedUpB9HVLB7i_xH1b9x3lJ9WjnLcAtF0JeFidcNFCx9rutPq-vjz_8vmSZJ0QQyZz2KMbSZin5DBMtcEdBlMiMh5yzNGrkahgiHdT1DcxmOTKT4gGM3F-p_TkwjVxYcJcopKaXM4z1gmz-23j0cd0IOu3wwty9fOHxnEkNiavJhfD4-qBVWPGJ7fvWfX1_bur9cf64tOH8_Wbi1qz1cBrAwNTwgIVA2Wg1cBFD8L0itmNZWqD2HXA201njdUctOHQW8Z0J7oVCrvhZ9Xro-9u3ng0ugyW1Ch3yXmVDjIqJ__NBHcjr-NeUloOyAZeHJ7fOqT4bS7LSu_ysowKGOcsOaU99Ez0i7Q9SnWKOSe0d30oyAWl3MojSrmglCBkQVnKnv09413RH3ZF8OoowHKpvcMksy7MNBqXUE_SRPf_Dr8AyRq3Hg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117072973</pqid></control><display><type>article</type><title>CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8+ T cell formation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Raynor, Jana L. ; Collins, Nicholas ; Shi, Hao ; Guy, Cliff ; Saravia, Jordy ; Ah Lim, Seon ; Chapman, Nicole M. ; Zhou, Peipei ; Wang, Yan ; Sun, Yu ; Risch, Isabel ; Hu, Haoran ; KC, Anil ; Sun, Renqiang ; Shrestha, Sharad ; Huang, Hongling ; Connelly, Jon P. ; Pruett-Miller, Shondra M. ; Reina-Campos, Miguel ; Goldrath, Ananda W. ; Belkaid, Yasmine ; Chi, Hongbo</creator><creatorcontrib>Raynor, Jana L. ; Collins, Nicholas ; Shi, Hao ; Guy, Cliff ; Saravia, Jordy ; Ah Lim, Seon ; Chapman, Nicole M. ; Zhou, Peipei ; Wang, Yan ; Sun, Yu ; Risch, Isabel ; Hu, Haoran ; KC, Anil ; Sun, Renqiang ; Shrestha, Sharad ; Huang, Hongling ; Connelly, Jon P. ; Pruett-Miller, Shondra M. ; Reina-Campos, Miguel ; Goldrath, Ananda W. ; Belkaid, Yasmine ; Chi, Hongbo</creatorcontrib><description>Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes—Flcn, Ragulator, and Rag GTPases—inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor β (TGF-β)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity.
[Display omitted]
•Systematic discovery of mitochondrial and lysosomal pathways in CD8+ TRM formation•Lysosomal signaling and amino acids shape Tfeb-driven TRM development•Small intestine-specific TRM programming is impeded by the Flcn-Tfeb signaling axis•Acss1 and Mrpl52 empower early siIEL TRM formation in distinct contexts
How organelle signaling and metabolic adaptation orchestrate tissue-resident CD8+ T (TRM) cell development remains poorly defined. Here, Raynor et al. establish three nutrient-dependent lysosomal signaling nodes as negative regulators of TRM differentiation in the small intestine. These results uncover mechanisms dictating TRM cell quality and quantity for tissue immunity.</description><identifier>ISSN: 1074-7613</identifier><identifier>ISSN: 1097-4180</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2024.09.013</identifier><identifier>PMID: 39406246</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adaptive immunity ; Animals ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; CD8 T cell ; CD8-Positive T-Lymphocytes - immunology ; Cell Differentiation - immunology ; CRISPR-Cas Systems ; dietary intervention ; Immunologic Memory ; immunometabolism ; Intestines - immunology ; lysosome ; Lysosomes - metabolism ; Memory T Cells - immunology ; Memory T Cells - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; mitochondria ; Mitochondria - metabolism ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Nutrients - metabolism ; Signal Transduction ; tissue-resident memory</subject><ispartof>Immunity (Cambridge, Mass.), 2024-11, Vol.57 (11), p.2597-2614.e13</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2583-d082a9f0198120ca839709d7a2fbf2abee66034b6fdfc30cd307f22c6965e9fb3</cites><orcidid>0000-0002-9997-2496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.immuni.2024.09.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39406246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raynor, Jana L.</creatorcontrib><creatorcontrib>Collins, Nicholas</creatorcontrib><creatorcontrib>Shi, Hao</creatorcontrib><creatorcontrib>Guy, Cliff</creatorcontrib><creatorcontrib>Saravia, Jordy</creatorcontrib><creatorcontrib>Ah Lim, Seon</creatorcontrib><creatorcontrib>Chapman, Nicole M.</creatorcontrib><creatorcontrib>Zhou, Peipei</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Risch, Isabel</creatorcontrib><creatorcontrib>Hu, Haoran</creatorcontrib><creatorcontrib>KC, Anil</creatorcontrib><creatorcontrib>Sun, Renqiang</creatorcontrib><creatorcontrib>Shrestha, Sharad</creatorcontrib><creatorcontrib>Huang, Hongling</creatorcontrib><creatorcontrib>Connelly, Jon P.</creatorcontrib><creatorcontrib>Pruett-Miller, Shondra M.</creatorcontrib><creatorcontrib>Reina-Campos, Miguel</creatorcontrib><creatorcontrib>Goldrath, Ananda W.</creatorcontrib><creatorcontrib>Belkaid, Yasmine</creatorcontrib><creatorcontrib>Chi, Hongbo</creatorcontrib><title>CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8+ T cell formation</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes—Flcn, Ragulator, and Rag GTPases—inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor β (TGF-β)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity.
[Display omitted]
•Systematic discovery of mitochondrial and lysosomal pathways in CD8+ TRM formation•Lysosomal signaling and amino acids shape Tfeb-driven TRM development•Small intestine-specific TRM programming is impeded by the Flcn-Tfeb signaling axis•Acss1 and Mrpl52 empower early siIEL TRM formation in distinct contexts
How organelle signaling and metabolic adaptation orchestrate tissue-resident CD8+ T (TRM) cell development remains poorly defined. Here, Raynor et al. establish three nutrient-dependent lysosomal signaling nodes as negative regulators of TRM differentiation in the small intestine. These results uncover mechanisms dictating TRM cell quality and quantity for tissue immunity.</description><subject>adaptive immunity</subject><subject>Animals</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>CD8 T cell</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Cell Differentiation - immunology</subject><subject>CRISPR-Cas Systems</subject><subject>dietary intervention</subject><subject>Immunologic Memory</subject><subject>immunometabolism</subject><subject>Intestines - immunology</subject><subject>lysosome</subject><subject>Lysosomes - metabolism</subject><subject>Memory T Cells - immunology</subject><subject>Memory T Cells - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Nutrients - metabolism</subject><subject>Signal Transduction</subject><subject>tissue-resident memory</subject><issn>1074-7613</issn><issn>1097-4180</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kdtu1DAQhiMEoqXwBgj5EgkljO1sEt-A0HKqVAlUyrXltcetV7G92MlK-xC8A8_Ck-GwpYIbrjzy_PPP4auqpxQaCrR7uW2c93NwDQPWNiAaoPxedUpB9HVLB7i_xH1b9x3lJ9WjnLcAtF0JeFidcNFCx9rutPq-vjz_8vmSZJ0QQyZz2KMbSZin5DBMtcEdBlMiMh5yzNGrkahgiHdT1DcxmOTKT4gGM3F-p_TkwjVxYcJcopKaXM4z1gmz-23j0cd0IOu3wwty9fOHxnEkNiavJhfD4-qBVWPGJ7fvWfX1_bur9cf64tOH8_Wbi1qz1cBrAwNTwgIVA2Wg1cBFD8L0itmNZWqD2HXA201njdUctOHQW8Z0J7oVCrvhZ9Xro-9u3ng0ugyW1Ch3yXmVDjIqJ__NBHcjr-NeUloOyAZeHJ7fOqT4bS7LSu_ysowKGOcsOaU99Ez0i7Q9SnWKOSe0d30oyAWl3MojSrmglCBkQVnKnv09413RH3ZF8OoowHKpvcMksy7MNBqXUE_SRPf_Dr8AyRq3Hg</recordid><startdate>20241112</startdate><enddate>20241112</enddate><creator>Raynor, Jana L.</creator><creator>Collins, Nicholas</creator><creator>Shi, Hao</creator><creator>Guy, Cliff</creator><creator>Saravia, Jordy</creator><creator>Ah Lim, Seon</creator><creator>Chapman, Nicole M.</creator><creator>Zhou, Peipei</creator><creator>Wang, Yan</creator><creator>Sun, Yu</creator><creator>Risch, Isabel</creator><creator>Hu, Haoran</creator><creator>KC, Anil</creator><creator>Sun, Renqiang</creator><creator>Shrestha, Sharad</creator><creator>Huang, Hongling</creator><creator>Connelly, Jon P.</creator><creator>Pruett-Miller, Shondra M.</creator><creator>Reina-Campos, Miguel</creator><creator>Goldrath, Ananda W.</creator><creator>Belkaid, Yasmine</creator><creator>Chi, Hongbo</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9997-2496</orcidid></search><sort><creationdate>20241112</creationdate><title>CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8+ T cell formation</title><author>Raynor, Jana L. ; Collins, Nicholas ; Shi, Hao ; Guy, Cliff ; Saravia, Jordy ; Ah Lim, Seon ; Chapman, Nicole M. ; Zhou, Peipei ; Wang, Yan ; Sun, Yu ; Risch, Isabel ; Hu, Haoran ; KC, Anil ; Sun, Renqiang ; Shrestha, Sharad ; Huang, Hongling ; Connelly, Jon P. ; Pruett-Miller, Shondra M. ; Reina-Campos, Miguel ; Goldrath, Ananda W. ; Belkaid, Yasmine ; Chi, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2583-d082a9f0198120ca839709d7a2fbf2abee66034b6fdfc30cd307f22c6965e9fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adaptive immunity</topic><topic>Animals</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>CD8 T cell</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Cell Differentiation - immunology</topic><topic>CRISPR-Cas Systems</topic><topic>dietary intervention</topic><topic>Immunologic Memory</topic><topic>immunometabolism</topic><topic>Intestines - immunology</topic><topic>lysosome</topic><topic>Lysosomes - metabolism</topic><topic>Memory T Cells - immunology</topic><topic>Memory T Cells - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Nutrients - metabolism</topic><topic>Signal Transduction</topic><topic>tissue-resident memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raynor, Jana L.</creatorcontrib><creatorcontrib>Collins, Nicholas</creatorcontrib><creatorcontrib>Shi, Hao</creatorcontrib><creatorcontrib>Guy, Cliff</creatorcontrib><creatorcontrib>Saravia, Jordy</creatorcontrib><creatorcontrib>Ah Lim, Seon</creatorcontrib><creatorcontrib>Chapman, Nicole M.</creatorcontrib><creatorcontrib>Zhou, Peipei</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Risch, Isabel</creatorcontrib><creatorcontrib>Hu, Haoran</creatorcontrib><creatorcontrib>KC, Anil</creatorcontrib><creatorcontrib>Sun, Renqiang</creatorcontrib><creatorcontrib>Shrestha, Sharad</creatorcontrib><creatorcontrib>Huang, Hongling</creatorcontrib><creatorcontrib>Connelly, Jon P.</creatorcontrib><creatorcontrib>Pruett-Miller, Shondra M.</creatorcontrib><creatorcontrib>Reina-Campos, Miguel</creatorcontrib><creatorcontrib>Goldrath, Ananda W.</creatorcontrib><creatorcontrib>Belkaid, Yasmine</creatorcontrib><creatorcontrib>Chi, Hongbo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raynor, Jana L.</au><au>Collins, Nicholas</au><au>Shi, Hao</au><au>Guy, Cliff</au><au>Saravia, Jordy</au><au>Ah Lim, Seon</au><au>Chapman, Nicole M.</au><au>Zhou, Peipei</au><au>Wang, Yan</au><au>Sun, Yu</au><au>Risch, Isabel</au><au>Hu, Haoran</au><au>KC, Anil</au><au>Sun, Renqiang</au><au>Shrestha, Sharad</au><au>Huang, Hongling</au><au>Connelly, Jon P.</au><au>Pruett-Miller, Shondra M.</au><au>Reina-Campos, Miguel</au><au>Goldrath, Ananda W.</au><au>Belkaid, Yasmine</au><au>Chi, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8+ T cell formation</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2024-11-12</date><risdate>2024</risdate><volume>57</volume><issue>11</issue><spage>2597</spage><epage>2614.e13</epage><pages>2597-2614.e13</pages><issn>1074-7613</issn><issn>1097-4180</issn><eissn>1097-4180</eissn><abstract>Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes—Flcn, Ragulator, and Rag GTPases—inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor β (TGF-β)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity.
[Display omitted]
•Systematic discovery of mitochondrial and lysosomal pathways in CD8+ TRM formation•Lysosomal signaling and amino acids shape Tfeb-driven TRM development•Small intestine-specific TRM programming is impeded by the Flcn-Tfeb signaling axis•Acss1 and Mrpl52 empower early siIEL TRM formation in distinct contexts
How organelle signaling and metabolic adaptation orchestrate tissue-resident CD8+ T (TRM) cell development remains poorly defined. Here, Raynor et al. establish three nutrient-dependent lysosomal signaling nodes as negative regulators of TRM differentiation in the small intestine. These results uncover mechanisms dictating TRM cell quality and quantity for tissue immunity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39406246</pmid><doi>10.1016/j.immuni.2024.09.013</doi><orcidid>https://orcid.org/0000-0002-9997-2496</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-7613 |
ispartof | Immunity (Cambridge, Mass.), 2024-11, Vol.57 (11), p.2597-2614.e13 |
issn | 1074-7613 1097-4180 1097-4180 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11590283 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | adaptive immunity Animals Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism CD8 T cell CD8-Positive T-Lymphocytes - immunology Cell Differentiation - immunology CRISPR-Cas Systems dietary intervention Immunologic Memory immunometabolism Intestines - immunology lysosome Lysosomes - metabolism Memory T Cells - immunology Memory T Cells - metabolism Mice Mice, Inbred C57BL Mice, Knockout mitochondria Mitochondria - metabolism Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Nutrients - metabolism Signal Transduction tissue-resident memory |
title | CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8+ T cell formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR%20screens%20unveil%20nutrient-dependent%20lysosomal%20and%20mitochondrial%20nodes%20impacting%20intestinal%20tissue-resident%20memory%20CD8+%20T%C2%A0cell%20formation&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Raynor,%20Jana%20L.&rft.date=2024-11-12&rft.volume=57&rft.issue=11&rft.spage=2597&rft.epage=2614.e13&rft.pages=2597-2614.e13&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2024.09.013&rft_dat=%3Cproquest_pubme%3E3117072973%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117072973&rft_id=info:pmid/39406246&rft_els_id=S1074761324004576&rfr_iscdi=true |