CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8+ T cell formation

Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunity (Cambridge, Mass.) Mass.), 2024-11, Vol.57 (11), p.2597-2614.e13
Hauptverfasser: Raynor, Jana L., Collins, Nicholas, Shi, Hao, Guy, Cliff, Saravia, Jordy, Ah Lim, Seon, Chapman, Nicole M., Zhou, Peipei, Wang, Yan, Sun, Yu, Risch, Isabel, Hu, Haoran, KC, Anil, Sun, Renqiang, Shrestha, Sharad, Huang, Hongling, Connelly, Jon P., Pruett-Miller, Shondra M., Reina-Campos, Miguel, Goldrath, Ananda W., Belkaid, Yasmine, Chi, Hongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2614.e13
container_issue 11
container_start_page 2597
container_title Immunity (Cambridge, Mass.)
container_volume 57
creator Raynor, Jana L.
Collins, Nicholas
Shi, Hao
Guy, Cliff
Saravia, Jordy
Ah Lim, Seon
Chapman, Nicole M.
Zhou, Peipei
Wang, Yan
Sun, Yu
Risch, Isabel
Hu, Haoran
KC, Anil
Sun, Renqiang
Shrestha, Sharad
Huang, Hongling
Connelly, Jon P.
Pruett-Miller, Shondra M.
Reina-Campos, Miguel
Goldrath, Ananda W.
Belkaid, Yasmine
Chi, Hongbo
description Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes—Flcn, Ragulator, and Rag GTPases—inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor β (TGF-β)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity. [Display omitted] •Systematic discovery of mitochondrial and lysosomal pathways in CD8+ TRM formation•Lysosomal signaling and amino acids shape Tfeb-driven TRM development•Small intestine-specific TRM programming is impeded by the Flcn-Tfeb signaling axis•Acss1 and Mrpl52 empower early siIEL TRM formation in distinct contexts How organelle signaling and metabolic adaptation orchestrate tissue-resident CD8+ T (TRM) cell development remains poorly defined. Here, Raynor et al. establish three nutrient-dependent lysosomal signaling nodes as negative regulators of TRM differentiation in the small intestine. These results uncover mechanisms dictating TRM cell quality and quantity for tissue immunity.
doi_str_mv 10.1016/j.immuni.2024.09.013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11590283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761324004576</els_id><sourcerecordid>3117072973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2583-d082a9f0198120ca839709d7a2fbf2abee66034b6fdfc30cd307f22c6965e9fb3</originalsourceid><addsrcrecordid>eNp9kdtu1DAQhiMEoqXwBgj5EgkljO1sEt-A0HKqVAlUyrXltcetV7G92MlK-xC8A8_Ck-GwpYIbrjzy_PPP4auqpxQaCrR7uW2c93NwDQPWNiAaoPxedUpB9HVLB7i_xH1b9x3lJ9WjnLcAtF0JeFidcNFCx9rutPq-vjz_8vmSZJ0QQyZz2KMbSZin5DBMtcEdBlMiMh5yzNGrkahgiHdT1DcxmOTKT4gGM3F-p_TkwjVxYcJcopKaXM4z1gmz-23j0cd0IOu3wwty9fOHxnEkNiavJhfD4-qBVWPGJ7fvWfX1_bur9cf64tOH8_Wbi1qz1cBrAwNTwgIVA2Wg1cBFD8L0itmNZWqD2HXA201njdUctOHQW8Z0J7oVCrvhZ9Xro-9u3ng0ugyW1Ch3yXmVDjIqJ__NBHcjr-NeUloOyAZeHJ7fOqT4bS7LSu_ysowKGOcsOaU99Ez0i7Q9SnWKOSe0d30oyAWl3MojSrmglCBkQVnKnv09413RH3ZF8OoowHKpvcMksy7MNBqXUE_SRPf_Dr8AyRq3Hg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117072973</pqid></control><display><type>article</type><title>CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8+ T cell formation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Raynor, Jana L. ; Collins, Nicholas ; Shi, Hao ; Guy, Cliff ; Saravia, Jordy ; Ah Lim, Seon ; Chapman, Nicole M. ; Zhou, Peipei ; Wang, Yan ; Sun, Yu ; Risch, Isabel ; Hu, Haoran ; KC, Anil ; Sun, Renqiang ; Shrestha, Sharad ; Huang, Hongling ; Connelly, Jon P. ; Pruett-Miller, Shondra M. ; Reina-Campos, Miguel ; Goldrath, Ananda W. ; Belkaid, Yasmine ; Chi, Hongbo</creator><creatorcontrib>Raynor, Jana L. ; Collins, Nicholas ; Shi, Hao ; Guy, Cliff ; Saravia, Jordy ; Ah Lim, Seon ; Chapman, Nicole M. ; Zhou, Peipei ; Wang, Yan ; Sun, Yu ; Risch, Isabel ; Hu, Haoran ; KC, Anil ; Sun, Renqiang ; Shrestha, Sharad ; Huang, Hongling ; Connelly, Jon P. ; Pruett-Miller, Shondra M. ; Reina-Campos, Miguel ; Goldrath, Ananda W. ; Belkaid, Yasmine ; Chi, Hongbo</creatorcontrib><description>Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes—Flcn, Ragulator, and Rag GTPases—inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor β (TGF-β)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity. [Display omitted] •Systematic discovery of mitochondrial and lysosomal pathways in CD8+ TRM formation•Lysosomal signaling and amino acids shape Tfeb-driven TRM development•Small intestine-specific TRM programming is impeded by the Flcn-Tfeb signaling axis•Acss1 and Mrpl52 empower early siIEL TRM formation in distinct contexts How organelle signaling and metabolic adaptation orchestrate tissue-resident CD8+ T (TRM) cell development remains poorly defined. Here, Raynor et al. establish three nutrient-dependent lysosomal signaling nodes as negative regulators of TRM differentiation in the small intestine. These results uncover mechanisms dictating TRM cell quality and quantity for tissue immunity.</description><identifier>ISSN: 1074-7613</identifier><identifier>ISSN: 1097-4180</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2024.09.013</identifier><identifier>PMID: 39406246</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adaptive immunity ; Animals ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; CD8 T cell ; CD8-Positive T-Lymphocytes - immunology ; Cell Differentiation - immunology ; CRISPR-Cas Systems ; dietary intervention ; Immunologic Memory ; immunometabolism ; Intestines - immunology ; lysosome ; Lysosomes - metabolism ; Memory T Cells - immunology ; Memory T Cells - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; mitochondria ; Mitochondria - metabolism ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Nutrients - metabolism ; Signal Transduction ; tissue-resident memory</subject><ispartof>Immunity (Cambridge, Mass.), 2024-11, Vol.57 (11), p.2597-2614.e13</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2583-d082a9f0198120ca839709d7a2fbf2abee66034b6fdfc30cd307f22c6965e9fb3</cites><orcidid>0000-0002-9997-2496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.immuni.2024.09.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39406246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raynor, Jana L.</creatorcontrib><creatorcontrib>Collins, Nicholas</creatorcontrib><creatorcontrib>Shi, Hao</creatorcontrib><creatorcontrib>Guy, Cliff</creatorcontrib><creatorcontrib>Saravia, Jordy</creatorcontrib><creatorcontrib>Ah Lim, Seon</creatorcontrib><creatorcontrib>Chapman, Nicole M.</creatorcontrib><creatorcontrib>Zhou, Peipei</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Risch, Isabel</creatorcontrib><creatorcontrib>Hu, Haoran</creatorcontrib><creatorcontrib>KC, Anil</creatorcontrib><creatorcontrib>Sun, Renqiang</creatorcontrib><creatorcontrib>Shrestha, Sharad</creatorcontrib><creatorcontrib>Huang, Hongling</creatorcontrib><creatorcontrib>Connelly, Jon P.</creatorcontrib><creatorcontrib>Pruett-Miller, Shondra M.</creatorcontrib><creatorcontrib>Reina-Campos, Miguel</creatorcontrib><creatorcontrib>Goldrath, Ananda W.</creatorcontrib><creatorcontrib>Belkaid, Yasmine</creatorcontrib><creatorcontrib>Chi, Hongbo</creatorcontrib><title>CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8+ T cell formation</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes—Flcn, Ragulator, and Rag GTPases—inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor β (TGF-β)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity. [Display omitted] •Systematic discovery of mitochondrial and lysosomal pathways in CD8+ TRM formation•Lysosomal signaling and amino acids shape Tfeb-driven TRM development•Small intestine-specific TRM programming is impeded by the Flcn-Tfeb signaling axis•Acss1 and Mrpl52 empower early siIEL TRM formation in distinct contexts How organelle signaling and metabolic adaptation orchestrate tissue-resident CD8+ T (TRM) cell development remains poorly defined. Here, Raynor et al. establish three nutrient-dependent lysosomal signaling nodes as negative regulators of TRM differentiation in the small intestine. These results uncover mechanisms dictating TRM cell quality and quantity for tissue immunity.</description><subject>adaptive immunity</subject><subject>Animals</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>CD8 T cell</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Cell Differentiation - immunology</subject><subject>CRISPR-Cas Systems</subject><subject>dietary intervention</subject><subject>Immunologic Memory</subject><subject>immunometabolism</subject><subject>Intestines - immunology</subject><subject>lysosome</subject><subject>Lysosomes - metabolism</subject><subject>Memory T Cells - immunology</subject><subject>Memory T Cells - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Nutrients - metabolism</subject><subject>Signal Transduction</subject><subject>tissue-resident memory</subject><issn>1074-7613</issn><issn>1097-4180</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kdtu1DAQhiMEoqXwBgj5EgkljO1sEt-A0HKqVAlUyrXltcetV7G92MlK-xC8A8_Ck-GwpYIbrjzy_PPP4auqpxQaCrR7uW2c93NwDQPWNiAaoPxedUpB9HVLB7i_xH1b9x3lJ9WjnLcAtF0JeFidcNFCx9rutPq-vjz_8vmSZJ0QQyZz2KMbSZin5DBMtcEdBlMiMh5yzNGrkahgiHdT1DcxmOTKT4gGM3F-p_TkwjVxYcJcopKaXM4z1gmz-23j0cd0IOu3wwty9fOHxnEkNiavJhfD4-qBVWPGJ7fvWfX1_bur9cf64tOH8_Wbi1qz1cBrAwNTwgIVA2Wg1cBFD8L0itmNZWqD2HXA201njdUctOHQW8Z0J7oVCrvhZ9Xro-9u3ng0ugyW1Ch3yXmVDjIqJ__NBHcjr-NeUloOyAZeHJ7fOqT4bS7LSu_ysowKGOcsOaU99Ez0i7Q9SnWKOSe0d30oyAWl3MojSrmglCBkQVnKnv09413RH3ZF8OoowHKpvcMksy7MNBqXUE_SRPf_Dr8AyRq3Hg</recordid><startdate>20241112</startdate><enddate>20241112</enddate><creator>Raynor, Jana L.</creator><creator>Collins, Nicholas</creator><creator>Shi, Hao</creator><creator>Guy, Cliff</creator><creator>Saravia, Jordy</creator><creator>Ah Lim, Seon</creator><creator>Chapman, Nicole M.</creator><creator>Zhou, Peipei</creator><creator>Wang, Yan</creator><creator>Sun, Yu</creator><creator>Risch, Isabel</creator><creator>Hu, Haoran</creator><creator>KC, Anil</creator><creator>Sun, Renqiang</creator><creator>Shrestha, Sharad</creator><creator>Huang, Hongling</creator><creator>Connelly, Jon P.</creator><creator>Pruett-Miller, Shondra M.</creator><creator>Reina-Campos, Miguel</creator><creator>Goldrath, Ananda W.</creator><creator>Belkaid, Yasmine</creator><creator>Chi, Hongbo</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9997-2496</orcidid></search><sort><creationdate>20241112</creationdate><title>CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8+ T cell formation</title><author>Raynor, Jana L. ; Collins, Nicholas ; Shi, Hao ; Guy, Cliff ; Saravia, Jordy ; Ah Lim, Seon ; Chapman, Nicole M. ; Zhou, Peipei ; Wang, Yan ; Sun, Yu ; Risch, Isabel ; Hu, Haoran ; KC, Anil ; Sun, Renqiang ; Shrestha, Sharad ; Huang, Hongling ; Connelly, Jon P. ; Pruett-Miller, Shondra M. ; Reina-Campos, Miguel ; Goldrath, Ananda W. ; Belkaid, Yasmine ; Chi, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2583-d082a9f0198120ca839709d7a2fbf2abee66034b6fdfc30cd307f22c6965e9fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adaptive immunity</topic><topic>Animals</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>CD8 T cell</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Cell Differentiation - immunology</topic><topic>CRISPR-Cas Systems</topic><topic>dietary intervention</topic><topic>Immunologic Memory</topic><topic>immunometabolism</topic><topic>Intestines - immunology</topic><topic>lysosome</topic><topic>Lysosomes - metabolism</topic><topic>Memory T Cells - immunology</topic><topic>Memory T Cells - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Nutrients - metabolism</topic><topic>Signal Transduction</topic><topic>tissue-resident memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raynor, Jana L.</creatorcontrib><creatorcontrib>Collins, Nicholas</creatorcontrib><creatorcontrib>Shi, Hao</creatorcontrib><creatorcontrib>Guy, Cliff</creatorcontrib><creatorcontrib>Saravia, Jordy</creatorcontrib><creatorcontrib>Ah Lim, Seon</creatorcontrib><creatorcontrib>Chapman, Nicole M.</creatorcontrib><creatorcontrib>Zhou, Peipei</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Risch, Isabel</creatorcontrib><creatorcontrib>Hu, Haoran</creatorcontrib><creatorcontrib>KC, Anil</creatorcontrib><creatorcontrib>Sun, Renqiang</creatorcontrib><creatorcontrib>Shrestha, Sharad</creatorcontrib><creatorcontrib>Huang, Hongling</creatorcontrib><creatorcontrib>Connelly, Jon P.</creatorcontrib><creatorcontrib>Pruett-Miller, Shondra M.</creatorcontrib><creatorcontrib>Reina-Campos, Miguel</creatorcontrib><creatorcontrib>Goldrath, Ananda W.</creatorcontrib><creatorcontrib>Belkaid, Yasmine</creatorcontrib><creatorcontrib>Chi, Hongbo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raynor, Jana L.</au><au>Collins, Nicholas</au><au>Shi, Hao</au><au>Guy, Cliff</au><au>Saravia, Jordy</au><au>Ah Lim, Seon</au><au>Chapman, Nicole M.</au><au>Zhou, Peipei</au><au>Wang, Yan</au><au>Sun, Yu</au><au>Risch, Isabel</au><au>Hu, Haoran</au><au>KC, Anil</au><au>Sun, Renqiang</au><au>Shrestha, Sharad</au><au>Huang, Hongling</au><au>Connelly, Jon P.</au><au>Pruett-Miller, Shondra M.</au><au>Reina-Campos, Miguel</au><au>Goldrath, Ananda W.</au><au>Belkaid, Yasmine</au><au>Chi, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8+ T cell formation</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2024-11-12</date><risdate>2024</risdate><volume>57</volume><issue>11</issue><spage>2597</spage><epage>2614.e13</epage><pages>2597-2614.e13</pages><issn>1074-7613</issn><issn>1097-4180</issn><eissn>1097-4180</eissn><abstract>Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes—Flcn, Ragulator, and Rag GTPases—inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor β (TGF-β)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity. [Display omitted] •Systematic discovery of mitochondrial and lysosomal pathways in CD8+ TRM formation•Lysosomal signaling and amino acids shape Tfeb-driven TRM development•Small intestine-specific TRM programming is impeded by the Flcn-Tfeb signaling axis•Acss1 and Mrpl52 empower early siIEL TRM formation in distinct contexts How organelle signaling and metabolic adaptation orchestrate tissue-resident CD8+ T (TRM) cell development remains poorly defined. Here, Raynor et al. establish three nutrient-dependent lysosomal signaling nodes as negative regulators of TRM differentiation in the small intestine. These results uncover mechanisms dictating TRM cell quality and quantity for tissue immunity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39406246</pmid><doi>10.1016/j.immuni.2024.09.013</doi><orcidid>https://orcid.org/0000-0002-9997-2496</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1074-7613
ispartof Immunity (Cambridge, Mass.), 2024-11, Vol.57 (11), p.2597-2614.e13
issn 1074-7613
1097-4180
1097-4180
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11590283
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects adaptive immunity
Animals
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism
CD8 T cell
CD8-Positive T-Lymphocytes - immunology
Cell Differentiation - immunology
CRISPR-Cas Systems
dietary intervention
Immunologic Memory
immunometabolism
Intestines - immunology
lysosome
Lysosomes - metabolism
Memory T Cells - immunology
Memory T Cells - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
mitochondria
Mitochondria - metabolism
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Nutrients - metabolism
Signal Transduction
tissue-resident memory
title CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8+ T cell formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR%20screens%20unveil%20nutrient-dependent%20lysosomal%20and%20mitochondrial%20nodes%20impacting%20intestinal%20tissue-resident%20memory%20CD8+%20T%C2%A0cell%20formation&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Raynor,%20Jana%20L.&rft.date=2024-11-12&rft.volume=57&rft.issue=11&rft.spage=2597&rft.epage=2614.e13&rft.pages=2597-2614.e13&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2024.09.013&rft_dat=%3Cproquest_pubme%3E3117072973%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117072973&rft_id=info:pmid/39406246&rft_els_id=S1074761324004576&rfr_iscdi=true