γ-Stearolactone ring-opening by zeolites for the production of branched saturated fatty acids

C 18 branched saturated fatty acids (BSFA) are used as ingredients in cosmetics and lubricants and are produced via the hydrogenation of C 18 branched unsaturated fatty acids (BUFA). Industrial-grade C 18 BUFA contain the odorous by-product γ-stearolactone (GSL), which must be removed by acid-cataly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2024-12, Vol.14 (24), p.737-747
Hauptverfasser: Bos, Jelle W, Vloedgraven, Job G. A, Wiedemann, Sophie C. C, van Dongen, Leo, Moonen, Roel C. J, Wels, Bas, Berben, Peter H, Reesink, Bennie H, de Peinder, Peter, Vogt, Eelco T. C, Weckhuysen, Bert M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 747
container_issue 24
container_start_page 737
container_title Catalysis science & technology
container_volume 14
creator Bos, Jelle W
Vloedgraven, Job G. A
Wiedemann, Sophie C. C
van Dongen, Leo
Moonen, Roel C. J
Wels, Bas
Berben, Peter H
Reesink, Bennie H
de Peinder, Peter
Vogt, Eelco T. C
Weckhuysen, Bert M
description C 18 branched saturated fatty acids (BSFA) are used as ingredients in cosmetics and lubricants and are produced via the hydrogenation of C 18 branched unsaturated fatty acids (BUFA). Industrial-grade C 18 BUFA contain the odorous by-product γ-stearolactone (GSL), which must be removed by acid-catalysed ring-opening of GSL into oleic acid. Zeolites such as Y and beta can facilitate the ring-opening, but due to the dimensions of GSL the activity is expected to be limited by diffusion into the micropores. Hence, zeolites Y and beta were modified via hydrothermal treatment and acid leaching and used in the GSL ring-opening reaction. While modification of zeolite beta led to a reduction in acidity of more than 50%, the material displayed much-enhanced activity compared to the parent material. In a batch reactor steamed beta zeolites were able to convert all GSL within 2 h, compared to 5 h for the parent zeolite. Infrared spectroscopy studies of adsorbed pyridine reveal that likely a beneficial change in Brønsted/Lewis acid site ratio is responsible for the increased activity. Lewis acid sites in zeolites are known to catalyse double bond isomerisation, which could greatly enhance GSL conversion by reducing the reverse formation of GSL from oleic acid. We believe that these insights can be used to further improve GSL ring-opening activity and inspire research on the ring-opening of other biomass derived lactones. Improvement in γ-stearolactone ring-opening activity of beta zeolites by a favourable change in Brønsted to Lewis acid site ratio, induced by steaming and acid leaching.
doi_str_mv 10.1039/d4cy00782d
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11589803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142205776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-aea25de8858ee3fdffdc3ff0f857f571de37a40a3debc97ad271ec1a4d176c743</originalsourceid><addsrcrecordid>eNpdkU9rFTEUxYMotrTduFcCbqQwNZlkJpmVyGvVQsGFunBjuC-56ZsyL3kmGeH5tfwe_Uymvvr8czf3wP1xOJdDyBPOzjgTw0sn7ZYxpVv3gBy2TMpGqp4_3OtOHJCTnG9YHTlwptvH5EAMPWf90B6SL7c_mg8FIcUJbIkBaRrDdRM3GOqmyy39jnEaC2bqY6JlhXSTopttGWOg0dNlgmBX6GiGMicoVXkoZUvBji4fk0cepown9_uIfHpz8XHxrrl6__Zy8fqqsYLr0gBC2znUutOIwjvvnRXeM6875TvFHQoFkoFwuLSDAtcqjpaDdFz1VklxRF7tfDfzco3OYigJJrNJ4xrS1kQYzb-XMK7MdfxmOO_0oJmoDi_uHVL8OmMuZj1mi9MEAeOcjeBCsl7z_g59_h96E-cU6n-Vkm3LOqX6Sp3uKJtizgn9Pg1n5q46cy4Xn39Vd17hZ3_n36O_i6rA0x2Qst1f_3QvfgJIIqEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142205776</pqid></control><display><type>article</type><title>γ-Stearolactone ring-opening by zeolites for the production of branched saturated fatty acids</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Bos, Jelle W ; Vloedgraven, Job G. A ; Wiedemann, Sophie C. C ; van Dongen, Leo ; Moonen, Roel C. J ; Wels, Bas ; Berben, Peter H ; Reesink, Bennie H ; de Peinder, Peter ; Vogt, Eelco T. C ; Weckhuysen, Bert M</creator><creatorcontrib>Bos, Jelle W ; Vloedgraven, Job G. A ; Wiedemann, Sophie C. C ; van Dongen, Leo ; Moonen, Roel C. J ; Wels, Bas ; Berben, Peter H ; Reesink, Bennie H ; de Peinder, Peter ; Vogt, Eelco T. C ; Weckhuysen, Bert M</creatorcontrib><description>C 18 branched saturated fatty acids (BSFA) are used as ingredients in cosmetics and lubricants and are produced via the hydrogenation of C 18 branched unsaturated fatty acids (BUFA). Industrial-grade C 18 BUFA contain the odorous by-product γ-stearolactone (GSL), which must be removed by acid-catalysed ring-opening of GSL into oleic acid. Zeolites such as Y and beta can facilitate the ring-opening, but due to the dimensions of GSL the activity is expected to be limited by diffusion into the micropores. Hence, zeolites Y and beta were modified via hydrothermal treatment and acid leaching and used in the GSL ring-opening reaction. While modification of zeolite beta led to a reduction in acidity of more than 50%, the material displayed much-enhanced activity compared to the parent material. In a batch reactor steamed beta zeolites were able to convert all GSL within 2 h, compared to 5 h for the parent zeolite. Infrared spectroscopy studies of adsorbed pyridine reveal that likely a beneficial change in Brønsted/Lewis acid site ratio is responsible for the increased activity. Lewis acid sites in zeolites are known to catalyse double bond isomerisation, which could greatly enhance GSL conversion by reducing the reverse formation of GSL from oleic acid. We believe that these insights can be used to further improve GSL ring-opening activity and inspire research on the ring-opening of other biomass derived lactones. Improvement in γ-stearolactone ring-opening activity of beta zeolites by a favourable change in Brønsted to Lewis acid site ratio, induced by steaming and acid leaching.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d4cy00782d</identifier><identifier>PMID: 39610692</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acid leaching ; Chemistry ; Cosmetics ; Fatty acids ; Hydrothermal treatment ; Isomerization ; Lactones ; Lewis acid ; Lubricants ; Oleic acid ; Ring opening ; Zeolites</subject><ispartof>Catalysis science &amp; technology, 2024-12, Vol.14 (24), p.737-747</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-aea25de8858ee3fdffdc3ff0f857f571de37a40a3debc97ad271ec1a4d176c743</cites><orcidid>0000-0001-5245-1426 ; 0009-0001-0866-5408 ; 0000-0003-4556-4283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39610692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bos, Jelle W</creatorcontrib><creatorcontrib>Vloedgraven, Job G. A</creatorcontrib><creatorcontrib>Wiedemann, Sophie C. C</creatorcontrib><creatorcontrib>van Dongen, Leo</creatorcontrib><creatorcontrib>Moonen, Roel C. J</creatorcontrib><creatorcontrib>Wels, Bas</creatorcontrib><creatorcontrib>Berben, Peter H</creatorcontrib><creatorcontrib>Reesink, Bennie H</creatorcontrib><creatorcontrib>de Peinder, Peter</creatorcontrib><creatorcontrib>Vogt, Eelco T. C</creatorcontrib><creatorcontrib>Weckhuysen, Bert M</creatorcontrib><title>γ-Stearolactone ring-opening by zeolites for the production of branched saturated fatty acids</title><title>Catalysis science &amp; technology</title><addtitle>Catal Sci Technol</addtitle><description>C 18 branched saturated fatty acids (BSFA) are used as ingredients in cosmetics and lubricants and are produced via the hydrogenation of C 18 branched unsaturated fatty acids (BUFA). Industrial-grade C 18 BUFA contain the odorous by-product γ-stearolactone (GSL), which must be removed by acid-catalysed ring-opening of GSL into oleic acid. Zeolites such as Y and beta can facilitate the ring-opening, but due to the dimensions of GSL the activity is expected to be limited by diffusion into the micropores. Hence, zeolites Y and beta were modified via hydrothermal treatment and acid leaching and used in the GSL ring-opening reaction. While modification of zeolite beta led to a reduction in acidity of more than 50%, the material displayed much-enhanced activity compared to the parent material. In a batch reactor steamed beta zeolites were able to convert all GSL within 2 h, compared to 5 h for the parent zeolite. Infrared spectroscopy studies of adsorbed pyridine reveal that likely a beneficial change in Brønsted/Lewis acid site ratio is responsible for the increased activity. Lewis acid sites in zeolites are known to catalyse double bond isomerisation, which could greatly enhance GSL conversion by reducing the reverse formation of GSL from oleic acid. We believe that these insights can be used to further improve GSL ring-opening activity and inspire research on the ring-opening of other biomass derived lactones. Improvement in γ-stearolactone ring-opening activity of beta zeolites by a favourable change in Brønsted to Lewis acid site ratio, induced by steaming and acid leaching.</description><subject>Acid leaching</subject><subject>Chemistry</subject><subject>Cosmetics</subject><subject>Fatty acids</subject><subject>Hydrothermal treatment</subject><subject>Isomerization</subject><subject>Lactones</subject><subject>Lewis acid</subject><subject>Lubricants</subject><subject>Oleic acid</subject><subject>Ring opening</subject><subject>Zeolites</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU9rFTEUxYMotrTduFcCbqQwNZlkJpmVyGvVQsGFunBjuC-56ZsyL3kmGeH5tfwe_Uymvvr8czf3wP1xOJdDyBPOzjgTw0sn7ZYxpVv3gBy2TMpGqp4_3OtOHJCTnG9YHTlwptvH5EAMPWf90B6SL7c_mg8FIcUJbIkBaRrDdRM3GOqmyy39jnEaC2bqY6JlhXSTopttGWOg0dNlgmBX6GiGMicoVXkoZUvBji4fk0cepown9_uIfHpz8XHxrrl6__Zy8fqqsYLr0gBC2znUutOIwjvvnRXeM6875TvFHQoFkoFwuLSDAtcqjpaDdFz1VklxRF7tfDfzco3OYigJJrNJ4xrS1kQYzb-XMK7MdfxmOO_0oJmoDi_uHVL8OmMuZj1mi9MEAeOcjeBCsl7z_g59_h96E-cU6n-Vkm3LOqX6Sp3uKJtizgn9Pg1n5q46cy4Xn39Vd17hZ3_n36O_i6rA0x2Qst1f_3QvfgJIIqEg</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Bos, Jelle W</creator><creator>Vloedgraven, Job G. A</creator><creator>Wiedemann, Sophie C. C</creator><creator>van Dongen, Leo</creator><creator>Moonen, Roel C. J</creator><creator>Wels, Bas</creator><creator>Berben, Peter H</creator><creator>Reesink, Bennie H</creator><creator>de Peinder, Peter</creator><creator>Vogt, Eelco T. C</creator><creator>Weckhuysen, Bert M</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5245-1426</orcidid><orcidid>https://orcid.org/0009-0001-0866-5408</orcidid><orcidid>https://orcid.org/0000-0003-4556-4283</orcidid></search><sort><creationdate>20241209</creationdate><title>γ-Stearolactone ring-opening by zeolites for the production of branched saturated fatty acids</title><author>Bos, Jelle W ; Vloedgraven, Job G. A ; Wiedemann, Sophie C. C ; van Dongen, Leo ; Moonen, Roel C. J ; Wels, Bas ; Berben, Peter H ; Reesink, Bennie H ; de Peinder, Peter ; Vogt, Eelco T. C ; Weckhuysen, Bert M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-aea25de8858ee3fdffdc3ff0f857f571de37a40a3debc97ad271ec1a4d176c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acid leaching</topic><topic>Chemistry</topic><topic>Cosmetics</topic><topic>Fatty acids</topic><topic>Hydrothermal treatment</topic><topic>Isomerization</topic><topic>Lactones</topic><topic>Lewis acid</topic><topic>Lubricants</topic><topic>Oleic acid</topic><topic>Ring opening</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bos, Jelle W</creatorcontrib><creatorcontrib>Vloedgraven, Job G. A</creatorcontrib><creatorcontrib>Wiedemann, Sophie C. C</creatorcontrib><creatorcontrib>van Dongen, Leo</creatorcontrib><creatorcontrib>Moonen, Roel C. J</creatorcontrib><creatorcontrib>Wels, Bas</creatorcontrib><creatorcontrib>Berben, Peter H</creatorcontrib><creatorcontrib>Reesink, Bennie H</creatorcontrib><creatorcontrib>de Peinder, Peter</creatorcontrib><creatorcontrib>Vogt, Eelco T. C</creatorcontrib><creatorcontrib>Weckhuysen, Bert M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bos, Jelle W</au><au>Vloedgraven, Job G. A</au><au>Wiedemann, Sophie C. C</au><au>van Dongen, Leo</au><au>Moonen, Roel C. J</au><au>Wels, Bas</au><au>Berben, Peter H</au><au>Reesink, Bennie H</au><au>de Peinder, Peter</au><au>Vogt, Eelco T. C</au><au>Weckhuysen, Bert M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>γ-Stearolactone ring-opening by zeolites for the production of branched saturated fatty acids</atitle><jtitle>Catalysis science &amp; technology</jtitle><addtitle>Catal Sci Technol</addtitle><date>2024-12-09</date><risdate>2024</risdate><volume>14</volume><issue>24</issue><spage>737</spage><epage>747</epage><pages>737-747</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>C 18 branched saturated fatty acids (BSFA) are used as ingredients in cosmetics and lubricants and are produced via the hydrogenation of C 18 branched unsaturated fatty acids (BUFA). Industrial-grade C 18 BUFA contain the odorous by-product γ-stearolactone (GSL), which must be removed by acid-catalysed ring-opening of GSL into oleic acid. Zeolites such as Y and beta can facilitate the ring-opening, but due to the dimensions of GSL the activity is expected to be limited by diffusion into the micropores. Hence, zeolites Y and beta were modified via hydrothermal treatment and acid leaching and used in the GSL ring-opening reaction. While modification of zeolite beta led to a reduction in acidity of more than 50%, the material displayed much-enhanced activity compared to the parent material. In a batch reactor steamed beta zeolites were able to convert all GSL within 2 h, compared to 5 h for the parent zeolite. Infrared spectroscopy studies of adsorbed pyridine reveal that likely a beneficial change in Brønsted/Lewis acid site ratio is responsible for the increased activity. Lewis acid sites in zeolites are known to catalyse double bond isomerisation, which could greatly enhance GSL conversion by reducing the reverse formation of GSL from oleic acid. We believe that these insights can be used to further improve GSL ring-opening activity and inspire research on the ring-opening of other biomass derived lactones. Improvement in γ-stearolactone ring-opening activity of beta zeolites by a favourable change in Brønsted to Lewis acid site ratio, induced by steaming and acid leaching.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39610692</pmid><doi>10.1039/d4cy00782d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5245-1426</orcidid><orcidid>https://orcid.org/0009-0001-0866-5408</orcidid><orcidid>https://orcid.org/0000-0003-4556-4283</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2024-12, Vol.14 (24), p.737-747
issn 2044-4753
2044-4761
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11589803
source Royal Society Of Chemistry Journals 2008-
subjects Acid leaching
Chemistry
Cosmetics
Fatty acids
Hydrothermal treatment
Isomerization
Lactones
Lewis acid
Lubricants
Oleic acid
Ring opening
Zeolites
title γ-Stearolactone ring-opening by zeolites for the production of branched saturated fatty acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B3-Stearolactone%20ring-opening%20by%20zeolites%20for%20the%20production%20of%20branched%20saturated%20fatty%20acids&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Bos,%20Jelle%20W&rft.date=2024-12-09&rft.volume=14&rft.issue=24&rft.spage=737&rft.epage=747&rft.pages=737-747&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d4cy00782d&rft_dat=%3Cproquest_pubme%3E3142205776%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142205776&rft_id=info:pmid/39610692&rfr_iscdi=true