Estimands and Cumulative Incidence Function Regression in Clinical Trials: Some New Results on Interpretability and Robustness

ABSTRACT Regression analyses based on transformations of cumulative incidence functions are often adopted when modeling and testing for treatment effects in clinical trial settings involving competing and semi‐competing risks. Common frameworks include the Fine–Gray model and models based on direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2024-12, Vol.43 (29), p.5513-5533
Hauptverfasser: Bühler, Alexandra, Cook, Richard J., Lawless, Jerald F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5533
container_issue 29
container_start_page 5513
container_title Statistics in medicine
container_volume 43
creator Bühler, Alexandra
Cook, Richard J.
Lawless, Jerald F.
description ABSTRACT Regression analyses based on transformations of cumulative incidence functions are often adopted when modeling and testing for treatment effects in clinical trial settings involving competing and semi‐competing risks. Common frameworks include the Fine–Gray model and models based on direct binomial regression. Using large sample theory we derive the limiting values of treatment effect estimators based on such models when the data are generated according to multiplicative intensity‐based models, and show that the estimand is sensitive to several process features. The rejection rates of hypothesis tests based on cumulative incidence function regression models are also examined for null hypotheses of different types, based on which a robustness property is established. In such settings supportive secondary analyses of treatment effects are essential to ensure a full understanding of the nature of treatment effects. An application to a palliative study of individuals with breast cancer metastatic to bone is provided for illustration.
doi_str_mv 10.1002/sim.10236
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11589047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121592176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3346-1a82040ac4b9ac994285f9c3a994b628d0e337a6b4b45417198d5f3c2fb566803</originalsourceid><addsrcrecordid>eNp1kU1rFDEcxoModq0e_AIS8KKHsXmbZOJFZGntQlVo6zlkMpmaksls89KyFz-76W5basFL8kB-efL88wDwFqNPGCFykNxUBaH8GVhgJEWDSNs9BwtEhGi4wO0eeJXSJUIYt0S8BHtUMt51ki3An8OU3aTDkGBd4LJMxevsri1cBeMGG4yFRyWY7OYAT-1FtCndShfg0rvgjPbwPDrt02d4Nk8W_rA3lUvF5wQrtwrZxnW0WffOu7zZvnI69yXlUK1egxdjvWvf3O374NfR4fnyuDn5-W21_HrSGEoZb7DuCGJIG9ZLbaRkpGtHaaiusuekG5ClVGjes561DAssu6EdqSFj33LeIboPvux816Wf7GBsyFF7tY519rhRs3bq35PgfquL-VrVH-skYqI6fLhziPNVsSmrySVjvdfBziUpigluJcGCV_T9E_RyLjHU-SpFCZdMbCN93FEmzilFOz6kwUjd1qpqrWpba2XfPY7_QN73WIGDHXDjvN3830mdrb7vLP8CqTetvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132694780</pqid></control><display><type>article</type><title>Estimands and Cumulative Incidence Function Regression in Clinical Trials: Some New Results on Interpretability and Robustness</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bühler, Alexandra ; Cook, Richard J. ; Lawless, Jerald F.</creator><creatorcontrib>Bühler, Alexandra ; Cook, Richard J. ; Lawless, Jerald F.</creatorcontrib><description>ABSTRACT Regression analyses based on transformations of cumulative incidence functions are often adopted when modeling and testing for treatment effects in clinical trial settings involving competing and semi‐competing risks. Common frameworks include the Fine–Gray model and models based on direct binomial regression. Using large sample theory we derive the limiting values of treatment effect estimators based on such models when the data are generated according to multiplicative intensity‐based models, and show that the estimand is sensitive to several process features. The rejection rates of hypothesis tests based on cumulative incidence function regression models are also examined for null hypotheses of different types, based on which a robustness property is established. In such settings supportive secondary analyses of treatment effects are essential to ensure a full understanding of the nature of treatment effects. An application to a palliative study of individuals with breast cancer metastatic to bone is provided for illustration.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.10236</identifier><identifier>PMID: 39468894</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bone Neoplasms - secondary ; Breast cancer ; Breast Neoplasms ; Clinical outcomes ; Clinical trials ; Clinical Trials as Topic ; competing risks ; Data Interpretation, Statistical ; estimands ; Female ; generalized linear models ; Humans ; Incidence ; large sample results ; Models, Statistical ; Regression Analysis ; robustness ; testing</subject><ispartof>Statistics in medicine, 2024-12, Vol.43 (29), p.5513-5533</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). Statistics in Medicine published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3346-1a82040ac4b9ac994285f9c3a994b628d0e337a6b4b45417198d5f3c2fb566803</cites><orcidid>0000-0002-1414-4908 ; 0000-0002-0872-0374 ; 0000-0002-3192-0470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.10236$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.10236$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39468894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bühler, Alexandra</creatorcontrib><creatorcontrib>Cook, Richard J.</creatorcontrib><creatorcontrib>Lawless, Jerald F.</creatorcontrib><title>Estimands and Cumulative Incidence Function Regression in Clinical Trials: Some New Results on Interpretability and Robustness</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>ABSTRACT Regression analyses based on transformations of cumulative incidence functions are often adopted when modeling and testing for treatment effects in clinical trial settings involving competing and semi‐competing risks. Common frameworks include the Fine–Gray model and models based on direct binomial regression. Using large sample theory we derive the limiting values of treatment effect estimators based on such models when the data are generated according to multiplicative intensity‐based models, and show that the estimand is sensitive to several process features. The rejection rates of hypothesis tests based on cumulative incidence function regression models are also examined for null hypotheses of different types, based on which a robustness property is established. In such settings supportive secondary analyses of treatment effects are essential to ensure a full understanding of the nature of treatment effects. An application to a palliative study of individuals with breast cancer metastatic to bone is provided for illustration.</description><subject>Bone Neoplasms - secondary</subject><subject>Breast cancer</subject><subject>Breast Neoplasms</subject><subject>Clinical outcomes</subject><subject>Clinical trials</subject><subject>Clinical Trials as Topic</subject><subject>competing risks</subject><subject>Data Interpretation, Statistical</subject><subject>estimands</subject><subject>Female</subject><subject>generalized linear models</subject><subject>Humans</subject><subject>Incidence</subject><subject>large sample results</subject><subject>Models, Statistical</subject><subject>Regression Analysis</subject><subject>robustness</subject><subject>testing</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU1rFDEcxoModq0e_AIS8KKHsXmbZOJFZGntQlVo6zlkMpmaksls89KyFz-76W5basFL8kB-efL88wDwFqNPGCFykNxUBaH8GVhgJEWDSNs9BwtEhGi4wO0eeJXSJUIYt0S8BHtUMt51ki3An8OU3aTDkGBd4LJMxevsri1cBeMGG4yFRyWY7OYAT-1FtCndShfg0rvgjPbwPDrt02d4Nk8W_rA3lUvF5wQrtwrZxnW0WffOu7zZvnI69yXlUK1egxdjvWvf3O374NfR4fnyuDn5-W21_HrSGEoZb7DuCGJIG9ZLbaRkpGtHaaiusuekG5ClVGjes561DAssu6EdqSFj33LeIboPvux816Wf7GBsyFF7tY519rhRs3bq35PgfquL-VrVH-skYqI6fLhziPNVsSmrySVjvdfBziUpigluJcGCV_T9E_RyLjHU-SpFCZdMbCN93FEmzilFOz6kwUjd1qpqrWpba2XfPY7_QN73WIGDHXDjvN3830mdrb7vLP8CqTetvg</recordid><startdate>20241220</startdate><enddate>20241220</enddate><creator>Bühler, Alexandra</creator><creator>Cook, Richard J.</creator><creator>Lawless, Jerald F.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid><orcidid>https://orcid.org/0000-0002-0872-0374</orcidid><orcidid>https://orcid.org/0000-0002-3192-0470</orcidid></search><sort><creationdate>20241220</creationdate><title>Estimands and Cumulative Incidence Function Regression in Clinical Trials: Some New Results on Interpretability and Robustness</title><author>Bühler, Alexandra ; Cook, Richard J. ; Lawless, Jerald F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3346-1a82040ac4b9ac994285f9c3a994b628d0e337a6b4b45417198d5f3c2fb566803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bone Neoplasms - secondary</topic><topic>Breast cancer</topic><topic>Breast Neoplasms</topic><topic>Clinical outcomes</topic><topic>Clinical trials</topic><topic>Clinical Trials as Topic</topic><topic>competing risks</topic><topic>Data Interpretation, Statistical</topic><topic>estimands</topic><topic>Female</topic><topic>generalized linear models</topic><topic>Humans</topic><topic>Incidence</topic><topic>large sample results</topic><topic>Models, Statistical</topic><topic>Regression Analysis</topic><topic>robustness</topic><topic>testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bühler, Alexandra</creatorcontrib><creatorcontrib>Cook, Richard J.</creatorcontrib><creatorcontrib>Lawless, Jerald F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bühler, Alexandra</au><au>Cook, Richard J.</au><au>Lawless, Jerald F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimands and Cumulative Incidence Function Regression in Clinical Trials: Some New Results on Interpretability and Robustness</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2024-12-20</date><risdate>2024</risdate><volume>43</volume><issue>29</issue><spage>5513</spage><epage>5533</epage><pages>5513-5533</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><abstract>ABSTRACT Regression analyses based on transformations of cumulative incidence functions are often adopted when modeling and testing for treatment effects in clinical trial settings involving competing and semi‐competing risks. Common frameworks include the Fine–Gray model and models based on direct binomial regression. Using large sample theory we derive the limiting values of treatment effect estimators based on such models when the data are generated according to multiplicative intensity‐based models, and show that the estimand is sensitive to several process features. The rejection rates of hypothesis tests based on cumulative incidence function regression models are also examined for null hypotheses of different types, based on which a robustness property is established. In such settings supportive secondary analyses of treatment effects are essential to ensure a full understanding of the nature of treatment effects. An application to a palliative study of individuals with breast cancer metastatic to bone is provided for illustration.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39468894</pmid><doi>10.1002/sim.10236</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid><orcidid>https://orcid.org/0000-0002-0872-0374</orcidid><orcidid>https://orcid.org/0000-0002-3192-0470</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2024-12, Vol.43 (29), p.5513-5533
issn 0277-6715
1097-0258
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11589047
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bone Neoplasms - secondary
Breast cancer
Breast Neoplasms
Clinical outcomes
Clinical trials
Clinical Trials as Topic
competing risks
Data Interpretation, Statistical
estimands
Female
generalized linear models
Humans
Incidence
large sample results
Models, Statistical
Regression Analysis
robustness
testing
title Estimands and Cumulative Incidence Function Regression in Clinical Trials: Some New Results on Interpretability and Robustness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimands%20and%20Cumulative%20Incidence%20Function%20Regression%20in%20Clinical%20Trials:%20Some%20New%20Results%20on%20Interpretability%20and%20Robustness&rft.jtitle=Statistics%20in%20medicine&rft.au=B%C3%BChler,%20Alexandra&rft.date=2024-12-20&rft.volume=43&rft.issue=29&rft.spage=5513&rft.epage=5533&rft.pages=5513-5533&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.10236&rft_dat=%3Cproquest_pubme%3E3121592176%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132694780&rft_id=info:pmid/39468894&rfr_iscdi=true