Estimands and Cumulative Incidence Function Regression in Clinical Trials: Some New Results on Interpretability and Robustness
ABSTRACT Regression analyses based on transformations of cumulative incidence functions are often adopted when modeling and testing for treatment effects in clinical trial settings involving competing and semi‐competing risks. Common frameworks include the Fine–Gray model and models based on direct...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2024-12, Vol.43 (29), p.5513-5533 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5533 |
---|---|
container_issue | 29 |
container_start_page | 5513 |
container_title | Statistics in medicine |
container_volume | 43 |
creator | Bühler, Alexandra Cook, Richard J. Lawless, Jerald F. |
description | ABSTRACT
Regression analyses based on transformations of cumulative incidence functions are often adopted when modeling and testing for treatment effects in clinical trial settings involving competing and semi‐competing risks. Common frameworks include the Fine–Gray model and models based on direct binomial regression. Using large sample theory we derive the limiting values of treatment effect estimators based on such models when the data are generated according to multiplicative intensity‐based models, and show that the estimand is sensitive to several process features. The rejection rates of hypothesis tests based on cumulative incidence function regression models are also examined for null hypotheses of different types, based on which a robustness property is established. In such settings supportive secondary analyses of treatment effects are essential to ensure a full understanding of the nature of treatment effects. An application to a palliative study of individuals with breast cancer metastatic to bone is provided for illustration. |
doi_str_mv | 10.1002/sim.10236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11589047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121592176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3346-1a82040ac4b9ac994285f9c3a994b628d0e337a6b4b45417198d5f3c2fb566803</originalsourceid><addsrcrecordid>eNp1kU1rFDEcxoModq0e_AIS8KKHsXmbZOJFZGntQlVo6zlkMpmaksls89KyFz-76W5basFL8kB-efL88wDwFqNPGCFykNxUBaH8GVhgJEWDSNs9BwtEhGi4wO0eeJXSJUIYt0S8BHtUMt51ki3An8OU3aTDkGBd4LJMxevsri1cBeMGG4yFRyWY7OYAT-1FtCndShfg0rvgjPbwPDrt02d4Nk8W_rA3lUvF5wQrtwrZxnW0WffOu7zZvnI69yXlUK1egxdjvWvf3O374NfR4fnyuDn5-W21_HrSGEoZb7DuCGJIG9ZLbaRkpGtHaaiusuekG5ClVGjes561DAssu6EdqSFj33LeIboPvux816Wf7GBsyFF7tY519rhRs3bq35PgfquL-VrVH-skYqI6fLhziPNVsSmrySVjvdfBziUpigluJcGCV_T9E_RyLjHU-SpFCZdMbCN93FEmzilFOz6kwUjd1qpqrWpba2XfPY7_QN73WIGDHXDjvN3830mdrb7vLP8CqTetvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132694780</pqid></control><display><type>article</type><title>Estimands and Cumulative Incidence Function Regression in Clinical Trials: Some New Results on Interpretability and Robustness</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bühler, Alexandra ; Cook, Richard J. ; Lawless, Jerald F.</creator><creatorcontrib>Bühler, Alexandra ; Cook, Richard J. ; Lawless, Jerald F.</creatorcontrib><description>ABSTRACT
Regression analyses based on transformations of cumulative incidence functions are often adopted when modeling and testing for treatment effects in clinical trial settings involving competing and semi‐competing risks. Common frameworks include the Fine–Gray model and models based on direct binomial regression. Using large sample theory we derive the limiting values of treatment effect estimators based on such models when the data are generated according to multiplicative intensity‐based models, and show that the estimand is sensitive to several process features. The rejection rates of hypothesis tests based on cumulative incidence function regression models are also examined for null hypotheses of different types, based on which a robustness property is established. In such settings supportive secondary analyses of treatment effects are essential to ensure a full understanding of the nature of treatment effects. An application to a palliative study of individuals with breast cancer metastatic to bone is provided for illustration.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.10236</identifier><identifier>PMID: 39468894</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Bone Neoplasms - secondary ; Breast cancer ; Breast Neoplasms ; Clinical outcomes ; Clinical trials ; Clinical Trials as Topic ; competing risks ; Data Interpretation, Statistical ; estimands ; Female ; generalized linear models ; Humans ; Incidence ; large sample results ; Models, Statistical ; Regression Analysis ; robustness ; testing</subject><ispartof>Statistics in medicine, 2024-12, Vol.43 (29), p.5513-5533</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). Statistics in Medicine published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3346-1a82040ac4b9ac994285f9c3a994b628d0e337a6b4b45417198d5f3c2fb566803</cites><orcidid>0000-0002-1414-4908 ; 0000-0002-0872-0374 ; 0000-0002-3192-0470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.10236$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.10236$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39468894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bühler, Alexandra</creatorcontrib><creatorcontrib>Cook, Richard J.</creatorcontrib><creatorcontrib>Lawless, Jerald F.</creatorcontrib><title>Estimands and Cumulative Incidence Function Regression in Clinical Trials: Some New Results on Interpretability and Robustness</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>ABSTRACT
Regression analyses based on transformations of cumulative incidence functions are often adopted when modeling and testing for treatment effects in clinical trial settings involving competing and semi‐competing risks. Common frameworks include the Fine–Gray model and models based on direct binomial regression. Using large sample theory we derive the limiting values of treatment effect estimators based on such models when the data are generated according to multiplicative intensity‐based models, and show that the estimand is sensitive to several process features. The rejection rates of hypothesis tests based on cumulative incidence function regression models are also examined for null hypotheses of different types, based on which a robustness property is established. In such settings supportive secondary analyses of treatment effects are essential to ensure a full understanding of the nature of treatment effects. An application to a palliative study of individuals with breast cancer metastatic to bone is provided for illustration.</description><subject>Bone Neoplasms - secondary</subject><subject>Breast cancer</subject><subject>Breast Neoplasms</subject><subject>Clinical outcomes</subject><subject>Clinical trials</subject><subject>Clinical Trials as Topic</subject><subject>competing risks</subject><subject>Data Interpretation, Statistical</subject><subject>estimands</subject><subject>Female</subject><subject>generalized linear models</subject><subject>Humans</subject><subject>Incidence</subject><subject>large sample results</subject><subject>Models, Statistical</subject><subject>Regression Analysis</subject><subject>robustness</subject><subject>testing</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU1rFDEcxoModq0e_AIS8KKHsXmbZOJFZGntQlVo6zlkMpmaksls89KyFz-76W5basFL8kB-efL88wDwFqNPGCFykNxUBaH8GVhgJEWDSNs9BwtEhGi4wO0eeJXSJUIYt0S8BHtUMt51ki3An8OU3aTDkGBd4LJMxevsri1cBeMGG4yFRyWY7OYAT-1FtCndShfg0rvgjPbwPDrt02d4Nk8W_rA3lUvF5wQrtwrZxnW0WffOu7zZvnI69yXlUK1egxdjvWvf3O374NfR4fnyuDn5-W21_HrSGEoZb7DuCGJIG9ZLbaRkpGtHaaiusuekG5ClVGjes561DAssu6EdqSFj33LeIboPvux816Wf7GBsyFF7tY519rhRs3bq35PgfquL-VrVH-skYqI6fLhziPNVsSmrySVjvdfBziUpigluJcGCV_T9E_RyLjHU-SpFCZdMbCN93FEmzilFOz6kwUjd1qpqrWpba2XfPY7_QN73WIGDHXDjvN3830mdrb7vLP8CqTetvg</recordid><startdate>20241220</startdate><enddate>20241220</enddate><creator>Bühler, Alexandra</creator><creator>Cook, Richard J.</creator><creator>Lawless, Jerald F.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid><orcidid>https://orcid.org/0000-0002-0872-0374</orcidid><orcidid>https://orcid.org/0000-0002-3192-0470</orcidid></search><sort><creationdate>20241220</creationdate><title>Estimands and Cumulative Incidence Function Regression in Clinical Trials: Some New Results on Interpretability and Robustness</title><author>Bühler, Alexandra ; Cook, Richard J. ; Lawless, Jerald F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3346-1a82040ac4b9ac994285f9c3a994b628d0e337a6b4b45417198d5f3c2fb566803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bone Neoplasms - secondary</topic><topic>Breast cancer</topic><topic>Breast Neoplasms</topic><topic>Clinical outcomes</topic><topic>Clinical trials</topic><topic>Clinical Trials as Topic</topic><topic>competing risks</topic><topic>Data Interpretation, Statistical</topic><topic>estimands</topic><topic>Female</topic><topic>generalized linear models</topic><topic>Humans</topic><topic>Incidence</topic><topic>large sample results</topic><topic>Models, Statistical</topic><topic>Regression Analysis</topic><topic>robustness</topic><topic>testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bühler, Alexandra</creatorcontrib><creatorcontrib>Cook, Richard J.</creatorcontrib><creatorcontrib>Lawless, Jerald F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bühler, Alexandra</au><au>Cook, Richard J.</au><au>Lawless, Jerald F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimands and Cumulative Incidence Function Regression in Clinical Trials: Some New Results on Interpretability and Robustness</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2024-12-20</date><risdate>2024</risdate><volume>43</volume><issue>29</issue><spage>5513</spage><epage>5533</epage><pages>5513-5533</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><abstract>ABSTRACT
Regression analyses based on transformations of cumulative incidence functions are often adopted when modeling and testing for treatment effects in clinical trial settings involving competing and semi‐competing risks. Common frameworks include the Fine–Gray model and models based on direct binomial regression. Using large sample theory we derive the limiting values of treatment effect estimators based on such models when the data are generated according to multiplicative intensity‐based models, and show that the estimand is sensitive to several process features. The rejection rates of hypothesis tests based on cumulative incidence function regression models are also examined for null hypotheses of different types, based on which a robustness property is established. In such settings supportive secondary analyses of treatment effects are essential to ensure a full understanding of the nature of treatment effects. An application to a palliative study of individuals with breast cancer metastatic to bone is provided for illustration.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>39468894</pmid><doi>10.1002/sim.10236</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid><orcidid>https://orcid.org/0000-0002-0872-0374</orcidid><orcidid>https://orcid.org/0000-0002-3192-0470</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2024-12, Vol.43 (29), p.5513-5533 |
issn | 0277-6715 1097-0258 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11589047 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bone Neoplasms - secondary Breast cancer Breast Neoplasms Clinical outcomes Clinical trials Clinical Trials as Topic competing risks Data Interpretation, Statistical estimands Female generalized linear models Humans Incidence large sample results Models, Statistical Regression Analysis robustness testing |
title | Estimands and Cumulative Incidence Function Regression in Clinical Trials: Some New Results on Interpretability and Robustness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimands%20and%20Cumulative%20Incidence%20Function%20Regression%20in%20Clinical%20Trials:%20Some%20New%20Results%20on%20Interpretability%20and%20Robustness&rft.jtitle=Statistics%20in%20medicine&rft.au=B%C3%BChler,%20Alexandra&rft.date=2024-12-20&rft.volume=43&rft.issue=29&rft.spage=5513&rft.epage=5533&rft.pages=5513-5533&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.10236&rft_dat=%3Cproquest_pubme%3E3121592176%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132694780&rft_id=info:pmid/39468894&rfr_iscdi=true |