Developing Catalysts for Membrane Electrode Assemblies in High Performance Polymer Electrolyte Membrane Water Electrolyzers

Extensive research is underway to achieve carbon neutrality through the production of green hydrogen via water electrolysis, powered by renewable energy. Polymer membrane water electrolyzers, such as proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2024-11, Vol.17 (22), p.e202301827-n/a
Hauptverfasser: Jeon, Sun Seo, Lee, Wonjae, Jeon, Hyeseong, Lee, Hyunjoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page e202301827
container_title ChemSusChem
container_volume 17
creator Jeon, Sun Seo
Lee, Wonjae
Jeon, Hyeseong
Lee, Hyunjoo
description Extensive research is underway to achieve carbon neutrality through the production of green hydrogen via water electrolysis, powered by renewable energy. Polymer membrane water electrolyzers, such as proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE), are at the forefront of this research. Developing highly active and durable electrode catalysts is crucial for commercializing these electrolyzers. However, most research is conducted in half‐cell setups, which may not fully represent the catalysts’ effectiveness in membrane‐electrode‐assembly (MEA) devices. This review explores the catalysts developed for high‐performance PEMWE and AEMWE MEA systems. Only the catalysts reporting on the MEA performance were discussed in this review. In PEMWE, strategies aim to minimize Ir use for the oxygen evolution reaction (OER) by maximizing activity, employing metal oxide‐based supports, integrating secondary elements into IrOx lattices, or exploring non‐Ir materials. For AEMWE, the emphasis is on enhancing the performance of NiFe‐based and Co‐based catalysts by improving electrical conductivity and mass transport. Pt‐based and Ni‐based catalysts for the hydrogen evolution reaction (HER) in AEMWE are also examined. Additionally, this review discusses the unique considerations for catalysts operating in pure water within AEMWE systems. Electrode catalysts developed for proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE) are discussed. The catalysts that actually applied in membrane‐electrode‐assembly were discussed with the cell performance and durability data.
doi_str_mv 10.1002/cssc.202301827
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11587686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077994785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3147-d84e482110af4aaa724df95f1ebfe309b03a557331f8c2f7a16fe3b6fc733d4e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0Eog_YskSR2LCZwa_YzgpVoVCkIioVBDvLca6nrpx4ameKUv48rqadFjasbJ373aN7dBB6RfCSYEzf2ZztkmLKMFFUPkH7RAm-qAX_-XT3Z2QPHeR8ibHAjRDP0R5TjaoxFfvo9we4hhDXflxVrZlMmPOUKxdT9QWGLpkRquMAdkqxh-oo5yIGD7nyY3XiVxfVGaQCD2a0UJ3FMA-Q7hfCPMGDyw8zPR7dQMov0DNnQoaXd-8h-v7x-Ft7sjj9-ulze3S6sIxwuegVB64oIdg4boyRlPeuqR2BzgHDTYeZqWvJGHHKUicNEUXvhLNF6zmwQ_R-67vedAP0FsYpmaDXyQ8mzToar_-ejP5Cr-K1JqRWUihRHN7eOaR4tYE86cFnCyGUZHGTNcNSNg2Xqi7om3_Qy7hJY8mnGWG0ZoSqplDLLWVTzDmB211DsL4tVt8Wq3fFloXXjzPs8PsmC9BsgV8-wPwfO92en7cP5n8A4uGzLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132531289</pqid></control><display><type>article</type><title>Developing Catalysts for Membrane Electrode Assemblies in High Performance Polymer Electrolyte Membrane Water Electrolyzers</title><source>Wiley Journals</source><creator>Jeon, Sun Seo ; Lee, Wonjae ; Jeon, Hyeseong ; Lee, Hyunjoo</creator><creatorcontrib>Jeon, Sun Seo ; Lee, Wonjae ; Jeon, Hyeseong ; Lee, Hyunjoo</creatorcontrib><description>Extensive research is underway to achieve carbon neutrality through the production of green hydrogen via water electrolysis, powered by renewable energy. Polymer membrane water electrolyzers, such as proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE), are at the forefront of this research. Developing highly active and durable electrode catalysts is crucial for commercializing these electrolyzers. However, most research is conducted in half‐cell setups, which may not fully represent the catalysts’ effectiveness in membrane‐electrode‐assembly (MEA) devices. This review explores the catalysts developed for high‐performance PEMWE and AEMWE MEA systems. Only the catalysts reporting on the MEA performance were discussed in this review. In PEMWE, strategies aim to minimize Ir use for the oxygen evolution reaction (OER) by maximizing activity, employing metal oxide‐based supports, integrating secondary elements into IrOx lattices, or exploring non‐Ir materials. For AEMWE, the emphasis is on enhancing the performance of NiFe‐based and Co‐based catalysts by improving electrical conductivity and mass transport. Pt‐based and Ni‐based catalysts for the hydrogen evolution reaction (HER) in AEMWE are also examined. Additionally, this review discusses the unique considerations for catalysts operating in pure water within AEMWE systems. Electrode catalysts developed for proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE) are discussed. The catalysts that actually applied in membrane‐electrode‐assembly were discussed with the cell performance and durability data.</description><identifier>ISSN: 1864-5631</identifier><identifier>ISSN: 1864-564X</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202301827</identifier><identifier>PMID: 38985026</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anion exchanging ; Catalysts ; Clean energy ; Electrical resistivity ; Electrodes ; Electrolysis ; Green hydrogen ; Hydrogen evolution reaction ; Hydrogen evolution reactions ; Iron compounds ; Mass transport ; Membrane electrode assembly ; Membranes ; Metal oxides ; Nickel compounds ; Oxygen evolution reaction ; Oxygen evolution reactions ; Performance enhancement ; Polymers ; Review ; Water electrolyzer</subject><ispartof>ChemSusChem, 2024-11, Vol.17 (22), p.e202301827-n/a</ispartof><rights>2024 The Authors. ChemSusChem published by Wiley-VCH GmbH</rights><rights>2024 The Authors. ChemSusChem published by Wiley-VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3147-d84e482110af4aaa724df95f1ebfe309b03a557331f8c2f7a16fe3b6fc733d4e3</cites><orcidid>0000-0002-4538-9086 ; 0000-0002-1073-1371 ; 0000-0003-2805-2841 ; 0009-0009-9279-551X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202301827$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202301827$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38985026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Sun Seo</creatorcontrib><creatorcontrib>Lee, Wonjae</creatorcontrib><creatorcontrib>Jeon, Hyeseong</creatorcontrib><creatorcontrib>Lee, Hyunjoo</creatorcontrib><title>Developing Catalysts for Membrane Electrode Assemblies in High Performance Polymer Electrolyte Membrane Water Electrolyzers</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Extensive research is underway to achieve carbon neutrality through the production of green hydrogen via water electrolysis, powered by renewable energy. Polymer membrane water electrolyzers, such as proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE), are at the forefront of this research. Developing highly active and durable electrode catalysts is crucial for commercializing these electrolyzers. However, most research is conducted in half‐cell setups, which may not fully represent the catalysts’ effectiveness in membrane‐electrode‐assembly (MEA) devices. This review explores the catalysts developed for high‐performance PEMWE and AEMWE MEA systems. Only the catalysts reporting on the MEA performance were discussed in this review. In PEMWE, strategies aim to minimize Ir use for the oxygen evolution reaction (OER) by maximizing activity, employing metal oxide‐based supports, integrating secondary elements into IrOx lattices, or exploring non‐Ir materials. For AEMWE, the emphasis is on enhancing the performance of NiFe‐based and Co‐based catalysts by improving electrical conductivity and mass transport. Pt‐based and Ni‐based catalysts for the hydrogen evolution reaction (HER) in AEMWE are also examined. Additionally, this review discusses the unique considerations for catalysts operating in pure water within AEMWE systems. Electrode catalysts developed for proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE) are discussed. The catalysts that actually applied in membrane‐electrode‐assembly were discussed with the cell performance and durability data.</description><subject>Anion exchanging</subject><subject>Catalysts</subject><subject>Clean energy</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Green hydrogen</subject><subject>Hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Iron compounds</subject><subject>Mass transport</subject><subject>Membrane electrode assembly</subject><subject>Membranes</subject><subject>Metal oxides</subject><subject>Nickel compounds</subject><subject>Oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Performance enhancement</subject><subject>Polymers</subject><subject>Review</subject><subject>Water electrolyzer</subject><issn>1864-5631</issn><issn>1864-564X</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkUtv1DAUhS0Eog_YskSR2LCZwa_YzgpVoVCkIioVBDvLca6nrpx4ameKUv48rqadFjasbJ373aN7dBB6RfCSYEzf2ZztkmLKMFFUPkH7RAm-qAX_-XT3Z2QPHeR8ibHAjRDP0R5TjaoxFfvo9we4hhDXflxVrZlMmPOUKxdT9QWGLpkRquMAdkqxh-oo5yIGD7nyY3XiVxfVGaQCD2a0UJ3FMA-Q7hfCPMGDyw8zPR7dQMov0DNnQoaXd-8h-v7x-Ft7sjj9-ulze3S6sIxwuegVB64oIdg4boyRlPeuqR2BzgHDTYeZqWvJGHHKUicNEUXvhLNF6zmwQ_R-67vedAP0FsYpmaDXyQ8mzToar_-ejP5Cr-K1JqRWUihRHN7eOaR4tYE86cFnCyGUZHGTNcNSNg2Xqi7om3_Qy7hJY8mnGWG0ZoSqplDLLWVTzDmB211DsL4tVt8Wq3fFloXXjzPs8PsmC9BsgV8-wPwfO92en7cP5n8A4uGzLg</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Jeon, Sun Seo</creator><creator>Lee, Wonjae</creator><creator>Jeon, Hyeseong</creator><creator>Lee, Hyunjoo</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4538-9086</orcidid><orcidid>https://orcid.org/0000-0002-1073-1371</orcidid><orcidid>https://orcid.org/0000-0003-2805-2841</orcidid><orcidid>https://orcid.org/0009-0009-9279-551X</orcidid></search><sort><creationdate>20241125</creationdate><title>Developing Catalysts for Membrane Electrode Assemblies in High Performance Polymer Electrolyte Membrane Water Electrolyzers</title><author>Jeon, Sun Seo ; Lee, Wonjae ; Jeon, Hyeseong ; Lee, Hyunjoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3147-d84e482110af4aaa724df95f1ebfe309b03a557331f8c2f7a16fe3b6fc733d4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anion exchanging</topic><topic>Catalysts</topic><topic>Clean energy</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Green hydrogen</topic><topic>Hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Iron compounds</topic><topic>Mass transport</topic><topic>Membrane electrode assembly</topic><topic>Membranes</topic><topic>Metal oxides</topic><topic>Nickel compounds</topic><topic>Oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Performance enhancement</topic><topic>Polymers</topic><topic>Review</topic><topic>Water electrolyzer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Sun Seo</creatorcontrib><creatorcontrib>Lee, Wonjae</creatorcontrib><creatorcontrib>Jeon, Hyeseong</creatorcontrib><creatorcontrib>Lee, Hyunjoo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Sun Seo</au><au>Lee, Wonjae</au><au>Jeon, Hyeseong</au><au>Lee, Hyunjoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing Catalysts for Membrane Electrode Assemblies in High Performance Polymer Electrolyte Membrane Water Electrolyzers</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2024-11-25</date><risdate>2024</risdate><volume>17</volume><issue>22</issue><spage>e202301827</spage><epage>n/a</epage><pages>e202301827-n/a</pages><issn>1864-5631</issn><issn>1864-564X</issn><eissn>1864-564X</eissn><abstract>Extensive research is underway to achieve carbon neutrality through the production of green hydrogen via water electrolysis, powered by renewable energy. Polymer membrane water electrolyzers, such as proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE), are at the forefront of this research. Developing highly active and durable electrode catalysts is crucial for commercializing these electrolyzers. However, most research is conducted in half‐cell setups, which may not fully represent the catalysts’ effectiveness in membrane‐electrode‐assembly (MEA) devices. This review explores the catalysts developed for high‐performance PEMWE and AEMWE MEA systems. Only the catalysts reporting on the MEA performance were discussed in this review. In PEMWE, strategies aim to minimize Ir use for the oxygen evolution reaction (OER) by maximizing activity, employing metal oxide‐based supports, integrating secondary elements into IrOx lattices, or exploring non‐Ir materials. For AEMWE, the emphasis is on enhancing the performance of NiFe‐based and Co‐based catalysts by improving electrical conductivity and mass transport. Pt‐based and Ni‐based catalysts for the hydrogen evolution reaction (HER) in AEMWE are also examined. Additionally, this review discusses the unique considerations for catalysts operating in pure water within AEMWE systems. Electrode catalysts developed for proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE) are discussed. The catalysts that actually applied in membrane‐electrode‐assembly were discussed with the cell performance and durability data.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38985026</pmid><doi>10.1002/cssc.202301827</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4538-9086</orcidid><orcidid>https://orcid.org/0000-0002-1073-1371</orcidid><orcidid>https://orcid.org/0000-0003-2805-2841</orcidid><orcidid>https://orcid.org/0009-0009-9279-551X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2024-11, Vol.17 (22), p.e202301827-n/a
issn 1864-5631
1864-564X
1864-564X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11587686
source Wiley Journals
subjects Anion exchanging
Catalysts
Clean energy
Electrical resistivity
Electrodes
Electrolysis
Green hydrogen
Hydrogen evolution reaction
Hydrogen evolution reactions
Iron compounds
Mass transport
Membrane electrode assembly
Membranes
Metal oxides
Nickel compounds
Oxygen evolution reaction
Oxygen evolution reactions
Performance enhancement
Polymers
Review
Water electrolyzer
title Developing Catalysts for Membrane Electrode Assemblies in High Performance Polymer Electrolyte Membrane Water Electrolyzers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20Catalysts%20for%20Membrane%20Electrode%20Assemblies%20in%20High%20Performance%20Polymer%20Electrolyte%20Membrane%20Water%20Electrolyzers&rft.jtitle=ChemSusChem&rft.au=Jeon,%20Sun%20Seo&rft.date=2024-11-25&rft.volume=17&rft.issue=22&rft.spage=e202301827&rft.epage=n/a&rft.pages=e202301827-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202301827&rft_dat=%3Cproquest_pubme%3E3077994785%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132531289&rft_id=info:pmid/38985026&rfr_iscdi=true