Quantifying Inflammatory Response and Drug-Aided Resolution in an Atopic Dermatitis Model with Deep Learning

Noninvasive quantification of dermal diseases aids efficacy studies and paves the way for broader enrollment in clinical studies across varied demographics. Related to atopic dermatitis, accurate quantification of the onset and resolution of inflammatory flare ups in the skin remains challenging bec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of investigative dermatology 2023-08, Vol.143 (8), p.1430-1438.e4
Hauptverfasser: Greenfield, Daniel A., Feizpour, Amin, Evans, Conor L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1438.e4
container_issue 8
container_start_page 1430
container_title Journal of investigative dermatology
container_volume 143
creator Greenfield, Daniel A.
Feizpour, Amin
Evans, Conor L.
description Noninvasive quantification of dermal diseases aids efficacy studies and paves the way for broader enrollment in clinical studies across varied demographics. Related to atopic dermatitis, accurate quantification of the onset and resolution of inflammatory flare ups in the skin remains challenging because the commonly used macroscale cues do not necessarily represent the underlying inflammation at the cellular level. Although atopic dermatitis affects over 10% of Americans, the genetic underpinnings and cellular-level phenomena causing the physical manifestation of the disease require more clarity. Current gold standards of quantification are often invasive, requiring biopsies followed by laboratory analysis. This represents a gap in our ability to diagnose and study skin inflammatory disease as well as develop improved topical therapeutic treatments. This need can be addressed through noninvasive imaging methods and the use of modern quantitative approaches to streamline the generation of relevant insights. This work reports the noninvasive image-based quantification of inflammation in an atopic dermatitis mouse model on the basis of cellular-level deep learning analysis of coherent anti-Stokes Raman scattering and stimulated Raman scattering imaging. This quantification method allows for timepoint-specific disease scores using morphological and physiological measurements. The outcomes we show set the stage for applying this workflow to future clinical studies. [Display omitted]
doi_str_mv 10.1016/j.jid.2023.01.026
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11586883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022202X23000945</els_id><sourcerecordid>2778971875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-c13c42d014f6ce64d8df64b1d142f6d6d62ae34a9f66bf7e28b16331fbb5d96e3</originalsourceid><addsrcrecordid>eNp9kU1vFCEYx4nR2LX6AbwYjl5mCgzDzMaD2bTVNlljNJp4Iww8bNnMwAhMzX572Wxt9GI4kDz_l4fwQ-g1JTUlVFzs670zNSOsqQmtCRNP0Iq2rKlox7unaEUIY1WRf5yhFyntScnwtn-OzhrRE05bukLjl0X57OzB-R2-9XZU06RyiAf8FdIcfAKsvMFXcdlVG2fAHOdhXLILHjtfRLzJYXYaX0EsSZddwp-CgRH_cvmuTGHGW1DRlwUv0TOrxgSvHu5z9P3D9bfLm2r7-ePt5WZbaU7WudK00ZwZQrkVGgQ3vbGCD9RQzqww5TAFDVdrK8RgO2D9QEXTUDsMrVkLaM7R-1PvvAwTGA0-RzXKObpJxYMMysl_Fe_u5C7cS0rbXvR9UxrePjTE8HOBlOXkkoZxVB7CkiTrun7d0b5ri5WerDqGlCLYxz2UyCMmuZcFkzxikoTKgqlk3vz9wMfEHy7F8O5kgPJN9w6iTNqB12BcBJ2lCe4_9b8BCYqlhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778971875</pqid></control><display><type>article</type><title>Quantifying Inflammatory Response and Drug-Aided Resolution in an Atopic Dermatitis Model with Deep Learning</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Greenfield, Daniel A. ; Feizpour, Amin ; Evans, Conor L.</creator><creatorcontrib>Greenfield, Daniel A. ; Feizpour, Amin ; Evans, Conor L.</creatorcontrib><description>Noninvasive quantification of dermal diseases aids efficacy studies and paves the way for broader enrollment in clinical studies across varied demographics. Related to atopic dermatitis, accurate quantification of the onset and resolution of inflammatory flare ups in the skin remains challenging because the commonly used macroscale cues do not necessarily represent the underlying inflammation at the cellular level. Although atopic dermatitis affects over 10% of Americans, the genetic underpinnings and cellular-level phenomena causing the physical manifestation of the disease require more clarity. Current gold standards of quantification are often invasive, requiring biopsies followed by laboratory analysis. This represents a gap in our ability to diagnose and study skin inflammatory disease as well as develop improved topical therapeutic treatments. This need can be addressed through noninvasive imaging methods and the use of modern quantitative approaches to streamline the generation of relevant insights. This work reports the noninvasive image-based quantification of inflammation in an atopic dermatitis mouse model on the basis of cellular-level deep learning analysis of coherent anti-Stokes Raman scattering and stimulated Raman scattering imaging. This quantification method allows for timepoint-specific disease scores using morphological and physiological measurements. The outcomes we show set the stage for applying this workflow to future clinical studies. [Display omitted]</description><identifier>ISSN: 0022-202X</identifier><identifier>ISSN: 1523-1747</identifier><identifier>EISSN: 1523-1747</identifier><identifier>DOI: 10.1016/j.jid.2023.01.026</identifier><identifier>PMID: 36804151</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Administration, Topical ; Animals ; Deep Learning ; Dermatitis, Atopic - drug therapy ; Dermatitis, Atopic - pathology ; Inflammation - drug therapy ; Mice ; Skin - diagnostic imaging ; Skin - pathology</subject><ispartof>Journal of investigative dermatology, 2023-08, Vol.143 (8), p.1430-1438.e4</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-c13c42d014f6ce64d8df64b1d142f6d6d62ae34a9f66bf7e28b16331fbb5d96e3</citedby><cites>FETCH-LOGICAL-c409t-c13c42d014f6ce64d8df64b1d142f6d6d62ae34a9f66bf7e28b16331fbb5d96e3</cites><orcidid>0000-0002-5094-8559 ; 0000-0002-1369-8124 ; 0000-0003-2185-6505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36804151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greenfield, Daniel A.</creatorcontrib><creatorcontrib>Feizpour, Amin</creatorcontrib><creatorcontrib>Evans, Conor L.</creatorcontrib><title>Quantifying Inflammatory Response and Drug-Aided Resolution in an Atopic Dermatitis Model with Deep Learning</title><title>Journal of investigative dermatology</title><addtitle>J Invest Dermatol</addtitle><description>Noninvasive quantification of dermal diseases aids efficacy studies and paves the way for broader enrollment in clinical studies across varied demographics. Related to atopic dermatitis, accurate quantification of the onset and resolution of inflammatory flare ups in the skin remains challenging because the commonly used macroscale cues do not necessarily represent the underlying inflammation at the cellular level. Although atopic dermatitis affects over 10% of Americans, the genetic underpinnings and cellular-level phenomena causing the physical manifestation of the disease require more clarity. Current gold standards of quantification are often invasive, requiring biopsies followed by laboratory analysis. This represents a gap in our ability to diagnose and study skin inflammatory disease as well as develop improved topical therapeutic treatments. This need can be addressed through noninvasive imaging methods and the use of modern quantitative approaches to streamline the generation of relevant insights. This work reports the noninvasive image-based quantification of inflammation in an atopic dermatitis mouse model on the basis of cellular-level deep learning analysis of coherent anti-Stokes Raman scattering and stimulated Raman scattering imaging. This quantification method allows for timepoint-specific disease scores using morphological and physiological measurements. The outcomes we show set the stage for applying this workflow to future clinical studies. [Display omitted]</description><subject>Administration, Topical</subject><subject>Animals</subject><subject>Deep Learning</subject><subject>Dermatitis, Atopic - drug therapy</subject><subject>Dermatitis, Atopic - pathology</subject><subject>Inflammation - drug therapy</subject><subject>Mice</subject><subject>Skin - diagnostic imaging</subject><subject>Skin - pathology</subject><issn>0022-202X</issn><issn>1523-1747</issn><issn>1523-1747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1vFCEYx4nR2LX6AbwYjl5mCgzDzMaD2bTVNlljNJp4Iww8bNnMwAhMzX572Wxt9GI4kDz_l4fwQ-g1JTUlVFzs670zNSOsqQmtCRNP0Iq2rKlox7unaEUIY1WRf5yhFyntScnwtn-OzhrRE05bukLjl0X57OzB-R2-9XZU06RyiAf8FdIcfAKsvMFXcdlVG2fAHOdhXLILHjtfRLzJYXYaX0EsSZddwp-CgRH_cvmuTGHGW1DRlwUv0TOrxgSvHu5z9P3D9bfLm2r7-ePt5WZbaU7WudK00ZwZQrkVGgQ3vbGCD9RQzqww5TAFDVdrK8RgO2D9QEXTUDsMrVkLaM7R-1PvvAwTGA0-RzXKObpJxYMMysl_Fe_u5C7cS0rbXvR9UxrePjTE8HOBlOXkkoZxVB7CkiTrun7d0b5ri5WerDqGlCLYxz2UyCMmuZcFkzxikoTKgqlk3vz9wMfEHy7F8O5kgPJN9w6iTNqB12BcBJ2lCe4_9b8BCYqlhA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Greenfield, Daniel A.</creator><creator>Feizpour, Amin</creator><creator>Evans, Conor L.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5094-8559</orcidid><orcidid>https://orcid.org/0000-0002-1369-8124</orcidid><orcidid>https://orcid.org/0000-0003-2185-6505</orcidid></search><sort><creationdate>20230801</creationdate><title>Quantifying Inflammatory Response and Drug-Aided Resolution in an Atopic Dermatitis Model with Deep Learning</title><author>Greenfield, Daniel A. ; Feizpour, Amin ; Evans, Conor L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-c13c42d014f6ce64d8df64b1d142f6d6d62ae34a9f66bf7e28b16331fbb5d96e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Administration, Topical</topic><topic>Animals</topic><topic>Deep Learning</topic><topic>Dermatitis, Atopic - drug therapy</topic><topic>Dermatitis, Atopic - pathology</topic><topic>Inflammation - drug therapy</topic><topic>Mice</topic><topic>Skin - diagnostic imaging</topic><topic>Skin - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greenfield, Daniel A.</creatorcontrib><creatorcontrib>Feizpour, Amin</creatorcontrib><creatorcontrib>Evans, Conor L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of investigative dermatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greenfield, Daniel A.</au><au>Feizpour, Amin</au><au>Evans, Conor L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Inflammatory Response and Drug-Aided Resolution in an Atopic Dermatitis Model with Deep Learning</atitle><jtitle>Journal of investigative dermatology</jtitle><addtitle>J Invest Dermatol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>143</volume><issue>8</issue><spage>1430</spage><epage>1438.e4</epage><pages>1430-1438.e4</pages><issn>0022-202X</issn><issn>1523-1747</issn><eissn>1523-1747</eissn><abstract>Noninvasive quantification of dermal diseases aids efficacy studies and paves the way for broader enrollment in clinical studies across varied demographics. Related to atopic dermatitis, accurate quantification of the onset and resolution of inflammatory flare ups in the skin remains challenging because the commonly used macroscale cues do not necessarily represent the underlying inflammation at the cellular level. Although atopic dermatitis affects over 10% of Americans, the genetic underpinnings and cellular-level phenomena causing the physical manifestation of the disease require more clarity. Current gold standards of quantification are often invasive, requiring biopsies followed by laboratory analysis. This represents a gap in our ability to diagnose and study skin inflammatory disease as well as develop improved topical therapeutic treatments. This need can be addressed through noninvasive imaging methods and the use of modern quantitative approaches to streamline the generation of relevant insights. This work reports the noninvasive image-based quantification of inflammation in an atopic dermatitis mouse model on the basis of cellular-level deep learning analysis of coherent anti-Stokes Raman scattering and stimulated Raman scattering imaging. This quantification method allows for timepoint-specific disease scores using morphological and physiological measurements. The outcomes we show set the stage for applying this workflow to future clinical studies. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36804151</pmid><doi>10.1016/j.jid.2023.01.026</doi><orcidid>https://orcid.org/0000-0002-5094-8559</orcidid><orcidid>https://orcid.org/0000-0002-1369-8124</orcidid><orcidid>https://orcid.org/0000-0003-2185-6505</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-202X
ispartof Journal of investigative dermatology, 2023-08, Vol.143 (8), p.1430-1438.e4
issn 0022-202X
1523-1747
1523-1747
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11586883
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Administration, Topical
Animals
Deep Learning
Dermatitis, Atopic - drug therapy
Dermatitis, Atopic - pathology
Inflammation - drug therapy
Mice
Skin - diagnostic imaging
Skin - pathology
title Quantifying Inflammatory Response and Drug-Aided Resolution in an Atopic Dermatitis Model with Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Inflammatory%20Response%20and%20Drug-Aided%20Resolution%20in%20an%20Atopic%20Dermatitis%20Model%20with%20Deep%20Learning&rft.jtitle=Journal%20of%20investigative%20dermatology&rft.au=Greenfield,%20Daniel%20A.&rft.date=2023-08-01&rft.volume=143&rft.issue=8&rft.spage=1430&rft.epage=1438.e4&rft.pages=1430-1438.e4&rft.issn=0022-202X&rft.eissn=1523-1747&rft_id=info:doi/10.1016/j.jid.2023.01.026&rft_dat=%3Cproquest_pubme%3E2778971875%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778971875&rft_id=info:pmid/36804151&rft_els_id=S0022202X23000945&rfr_iscdi=true