Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study

The study of microcirculation can reveal important information related to pathology. Focusing on alterations that are represented by an obstruction of blood flow in microcirculatory regions may provide an insight into vascular biomarkers. The current in silico study assesses the capability of contra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2024-11, Vol.69 (23), p.235006
Hauptverfasser: Arthur, Lachlan J M B, Voulgaridou, Vasiliki, Butler, Mairead B, Papageorgiou, Georgios, Lu, Weiping, McDougall, Steven R, Sboros, Vassilis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 235006
container_title Physics in medicine & biology
container_volume 69
creator Arthur, Lachlan J M B
Voulgaridou, Vasiliki
Butler, Mairead B
Papageorgiou, Georgios
Lu, Weiping
McDougall, Steven R
Sboros, Vassilis
description The study of microcirculation can reveal important information related to pathology. Focusing on alterations that are represented by an obstruction of blood flow in microcirculatory regions may provide an insight into vascular biomarkers. The current in silico study assesses the capability of contrast enhanced ultrasound (CEUS) and super-resolution ultrasound imaging (SRU) flow-quantification to study occlusive actions in a microvascular bed, particularly the ability to characterise known and model induced flow behaviours. The aim is to investigate theoretical limits with the use of CEUS and SRU in order to propose realistic biomarker targets relevant for clinical diagnosis. Results from CEUS flow parameters display limitations congruent with prior investigations. Conventional resolution limits lead to signals dominated by large vessels, making discrimination of microvasculature specific signals difficult. Additionally, some occlusions lead to weakened parametric correlation against flow rate in the remainder of the network. Loss of correlation is dependent on the degree to which flow is redistributed, with comparatively minor redistribution correlating in accordance with ground truth measurements for change in mean transit time,dMTT(CEUS,  = 0.85; GT,  = 0.82) and change in peak intensity,dIp(CEUS,  = 0.87; GT,  = 0.96). Major redistributions, however, result in a loss of correlation, demonstrating that the effectiveness of time-intensity curve parameters is influenced by the site of occlusion. Conversely, results from SRU processing provides accurate depiction of the anatomy and dynamics present in the vascular bed, that extends to individual microvessels. Correspondence between model vessel structure displayed in SRU maps with the ground truth was>91%for cases of minor and major flow redistributions. In conclusion, SRU appears to be a highly promising technology in the quantification of subtle flow phenomena due ischaemia induced vascular flow redistribution.
doi_str_mv 10.1088/1361-6560/ad9231
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11583374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128819052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-aaa376fc9245d3f6d6d5d11630c01117629184d57e4c513520ae441ce632ba373</originalsourceid><addsrcrecordid>eNp1UVtrFDEYDaLYtfruk-RxC47NN5lkZ3wRWeoFCoJ1n0M2yeymzCTTXJT-J3-kmW5dKygEAl_O5cs5CL0E8gZI254D5VBxxsm51F1N4RFaHEeP0YIQClUHjJ2gZzFeEwLQ1s1TdEI7RvkKyAL9XPtxksFG77DvsfIuBRlTZdxeOmU0zsM88NlpbEe5s26Hl-uLzdUZlmUU82RCFUz0Q062aDyAL6--bs5w7wNOe4NvsnTJ9lbJO1zxslHtpRmtxP3gf-BgtI0p2O2d0FssZ5oPJhXKgGPK-vY5etLLIZoX9_cp2ny4-Lb-VF1--fh5_f6yUpS0qZJS0hXvVVc3TNOea66ZBuCUqJIArHjdQdtotjKNYkBZTaRpGlCG03pbqPQUvTvoTnk7Gq3MHMogplASCLfCSyv-fnF2L3b-uwBgLaWrpigs7xWCv8kmJjGW75phkM74HAWFum2hI6wuUHKAquBjDKY_-gARc8tirlTMlYpDy4Xy6uF-R8LvWv_YWz-Ja5-DK3GJadwK3omalsMI4WLSfYG-_gf0v9a_AAT8wfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128819052</pqid></control><display><type>article</type><title>Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study</title><source>Institute of Physics Journals</source><source>MEDLINE</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Arthur, Lachlan J M B ; Voulgaridou, Vasiliki ; Butler, Mairead B ; Papageorgiou, Georgios ; Lu, Weiping ; McDougall, Steven R ; Sboros, Vassilis</creator><creatorcontrib>Arthur, Lachlan J M B ; Voulgaridou, Vasiliki ; Butler, Mairead B ; Papageorgiou, Georgios ; Lu, Weiping ; McDougall, Steven R ; Sboros, Vassilis</creatorcontrib><description>The study of microcirculation can reveal important information related to pathology. Focusing on alterations that are represented by an obstruction of blood flow in microcirculatory regions may provide an insight into vascular biomarkers. The current in silico study assesses the capability of contrast enhanced ultrasound (CEUS) and super-resolution ultrasound imaging (SRU) flow-quantification to study occlusive actions in a microvascular bed, particularly the ability to characterise known and model induced flow behaviours. The aim is to investigate theoretical limits with the use of CEUS and SRU in order to propose realistic biomarker targets relevant for clinical diagnosis. Results from CEUS flow parameters display limitations congruent with prior investigations. Conventional resolution limits lead to signals dominated by large vessels, making discrimination of microvasculature specific signals difficult. Additionally, some occlusions lead to weakened parametric correlation against flow rate in the remainder of the network. Loss of correlation is dependent on the degree to which flow is redistributed, with comparatively minor redistribution correlating in accordance with ground truth measurements for change in mean transit time,dMTT(CEUS,  = 0.85; GT,  = 0.82) and change in peak intensity,dIp(CEUS,  = 0.87; GT,  = 0.96). Major redistributions, however, result in a loss of correlation, demonstrating that the effectiveness of time-intensity curve parameters is influenced by the site of occlusion. Conversely, results from SRU processing provides accurate depiction of the anatomy and dynamics present in the vascular bed, that extends to individual microvessels. Correspondence between model vessel structure displayed in SRU maps with the ground truth was&gt;91%for cases of minor and major flow redistributions. In conclusion, SRU appears to be a highly promising technology in the quantification of subtle flow phenomena due ischaemia induced vascular flow redistribution.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ad9231</identifier><identifier>PMID: 39536710</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>capillary ; contrast agent ; Contrast Media ; Humans ; Ischemia - diagnostic imaging ; Ischemia - physiopathology ; Microcirculation ; Microvessels - diagnostic imaging ; pathology modelling ; Ultrasonography - methods ; vessel imaging</subject><ispartof>Physics in medicine &amp; biology, 2024-11, Vol.69 (23), p.235006</ispartof><rights>2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><rights>2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-aaa376fc9245d3f6d6d5d11630c01117629184d57e4c513520ae441ce632ba373</cites><orcidid>0009-0004-1906-567X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ad9231/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39536710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arthur, Lachlan J M B</creatorcontrib><creatorcontrib>Voulgaridou, Vasiliki</creatorcontrib><creatorcontrib>Butler, Mairead B</creatorcontrib><creatorcontrib>Papageorgiou, Georgios</creatorcontrib><creatorcontrib>Lu, Weiping</creatorcontrib><creatorcontrib>McDougall, Steven R</creatorcontrib><creatorcontrib>Sboros, Vassilis</creatorcontrib><title>Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>The study of microcirculation can reveal important information related to pathology. Focusing on alterations that are represented by an obstruction of blood flow in microcirculatory regions may provide an insight into vascular biomarkers. The current in silico study assesses the capability of contrast enhanced ultrasound (CEUS) and super-resolution ultrasound imaging (SRU) flow-quantification to study occlusive actions in a microvascular bed, particularly the ability to characterise known and model induced flow behaviours. The aim is to investigate theoretical limits with the use of CEUS and SRU in order to propose realistic biomarker targets relevant for clinical diagnosis. Results from CEUS flow parameters display limitations congruent with prior investigations. Conventional resolution limits lead to signals dominated by large vessels, making discrimination of microvasculature specific signals difficult. Additionally, some occlusions lead to weakened parametric correlation against flow rate in the remainder of the network. Loss of correlation is dependent on the degree to which flow is redistributed, with comparatively minor redistribution correlating in accordance with ground truth measurements for change in mean transit time,dMTT(CEUS,  = 0.85; GT,  = 0.82) and change in peak intensity,dIp(CEUS,  = 0.87; GT,  = 0.96). Major redistributions, however, result in a loss of correlation, demonstrating that the effectiveness of time-intensity curve parameters is influenced by the site of occlusion. Conversely, results from SRU processing provides accurate depiction of the anatomy and dynamics present in the vascular bed, that extends to individual microvessels. Correspondence between model vessel structure displayed in SRU maps with the ground truth was&gt;91%for cases of minor and major flow redistributions. In conclusion, SRU appears to be a highly promising technology in the quantification of subtle flow phenomena due ischaemia induced vascular flow redistribution.</description><subject>capillary</subject><subject>contrast agent</subject><subject>Contrast Media</subject><subject>Humans</subject><subject>Ischemia - diagnostic imaging</subject><subject>Ischemia - physiopathology</subject><subject>Microcirculation</subject><subject>Microvessels - diagnostic imaging</subject><subject>pathology modelling</subject><subject>Ultrasonography - methods</subject><subject>vessel imaging</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1UVtrFDEYDaLYtfruk-RxC47NN5lkZ3wRWeoFCoJ1n0M2yeymzCTTXJT-J3-kmW5dKygEAl_O5cs5CL0E8gZI254D5VBxxsm51F1N4RFaHEeP0YIQClUHjJ2gZzFeEwLQ1s1TdEI7RvkKyAL9XPtxksFG77DvsfIuBRlTZdxeOmU0zsM88NlpbEe5s26Hl-uLzdUZlmUU82RCFUz0Q062aDyAL6--bs5w7wNOe4NvsnTJ9lbJO1zxslHtpRmtxP3gf-BgtI0p2O2d0FssZ5oPJhXKgGPK-vY5etLLIZoX9_cp2ny4-Lb-VF1--fh5_f6yUpS0qZJS0hXvVVc3TNOea66ZBuCUqJIArHjdQdtotjKNYkBZTaRpGlCG03pbqPQUvTvoTnk7Gq3MHMogplASCLfCSyv-fnF2L3b-uwBgLaWrpigs7xWCv8kmJjGW75phkM74HAWFum2hI6wuUHKAquBjDKY_-gARc8tirlTMlYpDy4Xy6uF-R8LvWv_YWz-Ja5-DK3GJadwK3omalsMI4WLSfYG-_gf0v9a_AAT8wfQ</recordid><startdate>20241122</startdate><enddate>20241122</enddate><creator>Arthur, Lachlan J M B</creator><creator>Voulgaridou, Vasiliki</creator><creator>Butler, Mairead B</creator><creator>Papageorgiou, Georgios</creator><creator>Lu, Weiping</creator><creator>McDougall, Steven R</creator><creator>Sboros, Vassilis</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0004-1906-567X</orcidid></search><sort><creationdate>20241122</creationdate><title>Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study</title><author>Arthur, Lachlan J M B ; Voulgaridou, Vasiliki ; Butler, Mairead B ; Papageorgiou, Georgios ; Lu, Weiping ; McDougall, Steven R ; Sboros, Vassilis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-aaa376fc9245d3f6d6d5d11630c01117629184d57e4c513520ae441ce632ba373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>capillary</topic><topic>contrast agent</topic><topic>Contrast Media</topic><topic>Humans</topic><topic>Ischemia - diagnostic imaging</topic><topic>Ischemia - physiopathology</topic><topic>Microcirculation</topic><topic>Microvessels - diagnostic imaging</topic><topic>pathology modelling</topic><topic>Ultrasonography - methods</topic><topic>vessel imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arthur, Lachlan J M B</creatorcontrib><creatorcontrib>Voulgaridou, Vasiliki</creatorcontrib><creatorcontrib>Butler, Mairead B</creatorcontrib><creatorcontrib>Papageorgiou, Georgios</creatorcontrib><creatorcontrib>Lu, Weiping</creatorcontrib><creatorcontrib>McDougall, Steven R</creatorcontrib><creatorcontrib>Sboros, Vassilis</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arthur, Lachlan J M B</au><au>Voulgaridou, Vasiliki</au><au>Butler, Mairead B</au><au>Papageorgiou, Georgios</au><au>Lu, Weiping</au><au>McDougall, Steven R</au><au>Sboros, Vassilis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2024-11-22</date><risdate>2024</risdate><volume>69</volume><issue>23</issue><spage>235006</spage><pages>235006-</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>The study of microcirculation can reveal important information related to pathology. Focusing on alterations that are represented by an obstruction of blood flow in microcirculatory regions may provide an insight into vascular biomarkers. The current in silico study assesses the capability of contrast enhanced ultrasound (CEUS) and super-resolution ultrasound imaging (SRU) flow-quantification to study occlusive actions in a microvascular bed, particularly the ability to characterise known and model induced flow behaviours. The aim is to investigate theoretical limits with the use of CEUS and SRU in order to propose realistic biomarker targets relevant for clinical diagnosis. Results from CEUS flow parameters display limitations congruent with prior investigations. Conventional resolution limits lead to signals dominated by large vessels, making discrimination of microvasculature specific signals difficult. Additionally, some occlusions lead to weakened parametric correlation against flow rate in the remainder of the network. Loss of correlation is dependent on the degree to which flow is redistributed, with comparatively minor redistribution correlating in accordance with ground truth measurements for change in mean transit time,dMTT(CEUS,  = 0.85; GT,  = 0.82) and change in peak intensity,dIp(CEUS,  = 0.87; GT,  = 0.96). Major redistributions, however, result in a loss of correlation, demonstrating that the effectiveness of time-intensity curve parameters is influenced by the site of occlusion. Conversely, results from SRU processing provides accurate depiction of the anatomy and dynamics present in the vascular bed, that extends to individual microvessels. Correspondence between model vessel structure displayed in SRU maps with the ground truth was&gt;91%for cases of minor and major flow redistributions. In conclusion, SRU appears to be a highly promising technology in the quantification of subtle flow phenomena due ischaemia induced vascular flow redistribution.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39536710</pmid><doi>10.1088/1361-6560/ad9231</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0004-1906-567X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2024-11, Vol.69 (23), p.235006
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11583374
source Institute of Physics Journals; MEDLINE; Institute of Physics (IOP) Journals - HEAL-Link
subjects capillary
contrast agent
Contrast Media
Humans
Ischemia - diagnostic imaging
Ischemia - physiopathology
Microcirculation
Microvessels - diagnostic imaging
pathology modelling
Ultrasonography - methods
vessel imaging
title Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20contrast-enhanced%20ultrasound%20imaging%20(CEUS)%20and%20super-resolution%20ultrasound%20(SRU)%20for%20the%20quantification%20of%20ischaemia%20flow%20redistribution:%20a%20theoretical%20study&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Arthur,%20Lachlan%20J%20M%20B&rft.date=2024-11-22&rft.volume=69&rft.issue=23&rft.spage=235006&rft.pages=235006-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ad9231&rft_dat=%3Cproquest_pubme%3E3128819052%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128819052&rft_id=info:pmid/39536710&rfr_iscdi=true