ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery
In recent years, reinforcement learning (RL) has emerged as a valuable tool in drug design, offering the potential to propose and optimize molecules with desired properties. However, striking a balance between capabilities, flexibility, reliability, and efficiency remains challenging due to the comp...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2024-08, Vol.64 (15), p.5900-5911 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5911 |
---|---|
container_issue | 15 |
container_start_page | 5900 |
container_title | Journal of chemical information and modeling |
container_volume | 64 |
creator | Bou, Albert Thomas, Morgan Dittert, Sebastian Navarro, Carles Majewski, Maciej Wang, Ye Patel, Shivam Tresadern, Gary Ahmad, Mazen Moens, Vincent Sherman, Woody Sciabola, Simone De Fabritiis, Gianni |
description | In recent years, reinforcement learning (RL) has emerged as a valuable tool in drug design, offering the potential to propose and optimize molecules with desired properties. However, striking a balance between capabilities, flexibility, reliability, and efficiency remains challenging due to the complexity of advanced RL algorithms and the significant reliance on specialized code. In this work, we introduce ACEGEN, a comprehensive and streamlined toolkit tailored for generative drug design, built using TorchRL, a modern RL library that offers thoroughly tested reusable components. We validate ACEGEN by benchmarking against other published generative modeling algorithms and show comparable or improved performance. We also show examples of ACEGEN applied in multiple drug discovery case studies. ACEGEN is accessible at https://github.com/acellera/acegen-open and available for use under the MIT license. |
doi_str_mv | 10.1021/acs.jcim.4c00895 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11581341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092892527</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-5f00cb53b0a73f3b877b2761b55b2074bee479d938ef3e5726c05c9b86c1f41c3</originalsourceid><addsrcrecordid>eNp1kc9LIzEcxcOirLW79z0tAS8ebE0mk8nEy1JqrUJZQVzYW0jid2rKzKSbdAr-96b2B65gLgnk816-Lw-hH5QMKcnopbZxuLCuGeaWkFLyL6hHeS4HsiB_j_ZnLosTdBrjghDGZJF9RSdMEpmVXPTQ_Wg8mU5-X-EHcG3lg4UG2hWegQ6ta-fYV3gKLQS9cmvA42donNU1Hs0TFXES4OvQzfG1i9avIbx8Q8eVriN83-199Odm8ji-Hczup3fj0WygWc5XA14RYg1nhmjBKmZKIUwmCmo4NxkRuQHIhXySrISKARdZYQm30pSFpVVOLeujX1vfZWcaeLJpnKBrtQyu0eFFee3U_zete1Zzv1aU8pKynCaH851D8P86iCvVpBBQ17oF30XFSCkY5yytPjr7gC58F9qUL1HpI2XGM5EosqVs8DEGqA7TUKI2dalUl9rUpXZ1JcnP9ykOgn0_CbjYAm_S_aOf-r0CLeigpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092892527</pqid></control><display><type>article</type><title>ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bou, Albert ; Thomas, Morgan ; Dittert, Sebastian ; Navarro, Carles ; Majewski, Maciej ; Wang, Ye ; Patel, Shivam ; Tresadern, Gary ; Ahmad, Mazen ; Moens, Vincent ; Sherman, Woody ; Sciabola, Simone ; De Fabritiis, Gianni</creator><creatorcontrib>Bou, Albert ; Thomas, Morgan ; Dittert, Sebastian ; Navarro, Carles ; Majewski, Maciej ; Wang, Ye ; Patel, Shivam ; Tresadern, Gary ; Ahmad, Mazen ; Moens, Vincent ; Sherman, Woody ; Sciabola, Simone ; De Fabritiis, Gianni</creatorcontrib><description>In recent years, reinforcement learning (RL) has emerged as a valuable tool in drug design, offering the potential to propose and optimize molecules with desired properties. However, striking a balance between capabilities, flexibility, reliability, and efficiency remains challenging due to the complexity of advanced RL algorithms and the significant reliance on specialized code. In this work, we introduce ACEGEN, a comprehensive and streamlined toolkit tailored for generative drug design, built using TorchRL, a modern RL library that offers thoroughly tested reusable components. We validate ACEGEN by benchmarking against other published generative modeling algorithms and show comparable or improved performance. We also show examples of ACEGEN applied in multiple drug discovery case studies. ACEGEN is accessible at https://github.com/acellera/acegen-open and available for use under the MIT license.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.4c00895</identifier><identifier>PMID: 39092857</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Design optimization ; Drug Design ; Drug Discovery - methods ; Machine Learning ; Machine Learning and Deep Learning ; Reusable components ; Software</subject><ispartof>Journal of chemical information and modeling, 2024-08, Vol.64 (15), p.5900-5911</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 12, 2024</rights><rights>2024 American Chemical Society 2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a345t-5f00cb53b0a73f3b877b2761b55b2074bee479d938ef3e5726c05c9b86c1f41c3</cites><orcidid>0000-0003-2605-8166 ; 0000-0002-4801-1644 ; 0000-0001-9079-1376 ; 0000-0003-3913-4877 ; 0000-0001-6027-4538 ; 0000-0001-5274-2928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00895$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.4c00895$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39092857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bou, Albert</creatorcontrib><creatorcontrib>Thomas, Morgan</creatorcontrib><creatorcontrib>Dittert, Sebastian</creatorcontrib><creatorcontrib>Navarro, Carles</creatorcontrib><creatorcontrib>Majewski, Maciej</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Patel, Shivam</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><creatorcontrib>Ahmad, Mazen</creatorcontrib><creatorcontrib>Moens, Vincent</creatorcontrib><creatorcontrib>Sherman, Woody</creatorcontrib><creatorcontrib>Sciabola, Simone</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><title>ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>In recent years, reinforcement learning (RL) has emerged as a valuable tool in drug design, offering the potential to propose and optimize molecules with desired properties. However, striking a balance between capabilities, flexibility, reliability, and efficiency remains challenging due to the complexity of advanced RL algorithms and the significant reliance on specialized code. In this work, we introduce ACEGEN, a comprehensive and streamlined toolkit tailored for generative drug design, built using TorchRL, a modern RL library that offers thoroughly tested reusable components. We validate ACEGEN by benchmarking against other published generative modeling algorithms and show comparable or improved performance. We also show examples of ACEGEN applied in multiple drug discovery case studies. ACEGEN is accessible at https://github.com/acellera/acegen-open and available for use under the MIT license.</description><subject>Algorithms</subject><subject>Design optimization</subject><subject>Drug Design</subject><subject>Drug Discovery - methods</subject><subject>Machine Learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Reusable components</subject><subject>Software</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9LIzEcxcOirLW79z0tAS8ebE0mk8nEy1JqrUJZQVzYW0jid2rKzKSbdAr-96b2B65gLgnk816-Lw-hH5QMKcnopbZxuLCuGeaWkFLyL6hHeS4HsiB_j_ZnLosTdBrjghDGZJF9RSdMEpmVXPTQ_Wg8mU5-X-EHcG3lg4UG2hWegQ6ta-fYV3gKLQS9cmvA42donNU1Hs0TFXES4OvQzfG1i9avIbx8Q8eVriN83-199Odm8ji-Hczup3fj0WygWc5XA14RYg1nhmjBKmZKIUwmCmo4NxkRuQHIhXySrISKARdZYQm30pSFpVVOLeujX1vfZWcaeLJpnKBrtQyu0eFFee3U_zete1Zzv1aU8pKynCaH851D8P86iCvVpBBQ17oF30XFSCkY5yytPjr7gC58F9qUL1HpI2XGM5EosqVs8DEGqA7TUKI2dalUl9rUpXZ1JcnP9ykOgn0_CbjYAm_S_aOf-r0CLeigpQ</recordid><startdate>20240812</startdate><enddate>20240812</enddate><creator>Bou, Albert</creator><creator>Thomas, Morgan</creator><creator>Dittert, Sebastian</creator><creator>Navarro, Carles</creator><creator>Majewski, Maciej</creator><creator>Wang, Ye</creator><creator>Patel, Shivam</creator><creator>Tresadern, Gary</creator><creator>Ahmad, Mazen</creator><creator>Moens, Vincent</creator><creator>Sherman, Woody</creator><creator>Sciabola, Simone</creator><creator>De Fabritiis, Gianni</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2605-8166</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid><orcidid>https://orcid.org/0000-0001-9079-1376</orcidid><orcidid>https://orcid.org/0000-0003-3913-4877</orcidid><orcidid>https://orcid.org/0000-0001-6027-4538</orcidid><orcidid>https://orcid.org/0000-0001-5274-2928</orcidid></search><sort><creationdate>20240812</creationdate><title>ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery</title><author>Bou, Albert ; Thomas, Morgan ; Dittert, Sebastian ; Navarro, Carles ; Majewski, Maciej ; Wang, Ye ; Patel, Shivam ; Tresadern, Gary ; Ahmad, Mazen ; Moens, Vincent ; Sherman, Woody ; Sciabola, Simone ; De Fabritiis, Gianni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-5f00cb53b0a73f3b877b2761b55b2074bee479d938ef3e5726c05c9b86c1f41c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Design optimization</topic><topic>Drug Design</topic><topic>Drug Discovery - methods</topic><topic>Machine Learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Reusable components</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bou, Albert</creatorcontrib><creatorcontrib>Thomas, Morgan</creatorcontrib><creatorcontrib>Dittert, Sebastian</creatorcontrib><creatorcontrib>Navarro, Carles</creatorcontrib><creatorcontrib>Majewski, Maciej</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Patel, Shivam</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><creatorcontrib>Ahmad, Mazen</creatorcontrib><creatorcontrib>Moens, Vincent</creatorcontrib><creatorcontrib>Sherman, Woody</creatorcontrib><creatorcontrib>Sciabola, Simone</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bou, Albert</au><au>Thomas, Morgan</au><au>Dittert, Sebastian</au><au>Navarro, Carles</au><au>Majewski, Maciej</au><au>Wang, Ye</au><au>Patel, Shivam</au><au>Tresadern, Gary</au><au>Ahmad, Mazen</au><au>Moens, Vincent</au><au>Sherman, Woody</au><au>Sciabola, Simone</au><au>De Fabritiis, Gianni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-08-12</date><risdate>2024</risdate><volume>64</volume><issue>15</issue><spage>5900</spage><epage>5911</epage><pages>5900-5911</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>In recent years, reinforcement learning (RL) has emerged as a valuable tool in drug design, offering the potential to propose and optimize molecules with desired properties. However, striking a balance between capabilities, flexibility, reliability, and efficiency remains challenging due to the complexity of advanced RL algorithms and the significant reliance on specialized code. In this work, we introduce ACEGEN, a comprehensive and streamlined toolkit tailored for generative drug design, built using TorchRL, a modern RL library that offers thoroughly tested reusable components. We validate ACEGEN by benchmarking against other published generative modeling algorithms and show comparable or improved performance. We also show examples of ACEGEN applied in multiple drug discovery case studies. ACEGEN is accessible at https://github.com/acellera/acegen-open and available for use under the MIT license.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39092857</pmid><doi>10.1021/acs.jcim.4c00895</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2605-8166</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid><orcidid>https://orcid.org/0000-0001-9079-1376</orcidid><orcidid>https://orcid.org/0000-0003-3913-4877</orcidid><orcidid>https://orcid.org/0000-0001-6027-4538</orcidid><orcidid>https://orcid.org/0000-0001-5274-2928</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2024-08, Vol.64 (15), p.5900-5911 |
issn | 1549-9596 1549-960X 1549-960X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11581341 |
source | MEDLINE; ACS Publications |
subjects | Algorithms Design optimization Drug Design Drug Discovery - methods Machine Learning Machine Learning and Deep Learning Reusable components Software |
title | ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACEGEN:%20Reinforcement%20Learning%20of%20Generative%20Chemical%20Agents%20for%20Drug%20Discovery&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Bou,%20Albert&rft.date=2024-08-12&rft.volume=64&rft.issue=15&rft.spage=5900&rft.epage=5911&rft.pages=5900-5911&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.4c00895&rft_dat=%3Cproquest_pubme%3E3092892527%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092892527&rft_id=info:pmid/39092857&rfr_iscdi=true |