ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery

In recent years, reinforcement learning (RL) has emerged as a valuable tool in drug design, offering the potential to propose and optimize molecules with desired properties. However, striking a balance between capabilities, flexibility, reliability, and efficiency remains challenging due to the comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2024-08, Vol.64 (15), p.5900-5911
Hauptverfasser: Bou, Albert, Thomas, Morgan, Dittert, Sebastian, Navarro, Carles, Majewski, Maciej, Wang, Ye, Patel, Shivam, Tresadern, Gary, Ahmad, Mazen, Moens, Vincent, Sherman, Woody, Sciabola, Simone, De Fabritiis, Gianni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5911
container_issue 15
container_start_page 5900
container_title Journal of chemical information and modeling
container_volume 64
creator Bou, Albert
Thomas, Morgan
Dittert, Sebastian
Navarro, Carles
Majewski, Maciej
Wang, Ye
Patel, Shivam
Tresadern, Gary
Ahmad, Mazen
Moens, Vincent
Sherman, Woody
Sciabola, Simone
De Fabritiis, Gianni
description In recent years, reinforcement learning (RL) has emerged as a valuable tool in drug design, offering the potential to propose and optimize molecules with desired properties. However, striking a balance between capabilities, flexibility, reliability, and efficiency remains challenging due to the complexity of advanced RL algorithms and the significant reliance on specialized code. In this work, we introduce ACEGEN, a comprehensive and streamlined toolkit tailored for generative drug design, built using TorchRL, a modern RL library that offers thoroughly tested reusable components. We validate ACEGEN by benchmarking against other published generative modeling algorithms and show comparable or improved performance. We also show examples of ACEGEN applied in multiple drug discovery case studies. ACEGEN is accessible at https://github.com/acellera/acegen-open and available for use under the MIT license.
doi_str_mv 10.1021/acs.jcim.4c00895
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11581341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092892527</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-5f00cb53b0a73f3b877b2761b55b2074bee479d938ef3e5726c05c9b86c1f41c3</originalsourceid><addsrcrecordid>eNp1kc9LIzEcxcOirLW79z0tAS8ebE0mk8nEy1JqrUJZQVzYW0jid2rKzKSbdAr-96b2B65gLgnk816-Lw-hH5QMKcnopbZxuLCuGeaWkFLyL6hHeS4HsiB_j_ZnLosTdBrjghDGZJF9RSdMEpmVXPTQ_Wg8mU5-X-EHcG3lg4UG2hWegQ6ta-fYV3gKLQS9cmvA42donNU1Hs0TFXES4OvQzfG1i9avIbx8Q8eVriN83-199Odm8ji-Hczup3fj0WygWc5XA14RYg1nhmjBKmZKIUwmCmo4NxkRuQHIhXySrISKARdZYQm30pSFpVVOLeujX1vfZWcaeLJpnKBrtQyu0eFFee3U_zete1Zzv1aU8pKynCaH851D8P86iCvVpBBQ17oF30XFSCkY5yytPjr7gC58F9qUL1HpI2XGM5EosqVs8DEGqA7TUKI2dalUl9rUpXZ1JcnP9ykOgn0_CbjYAm_S_aOf-r0CLeigpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092892527</pqid></control><display><type>article</type><title>ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bou, Albert ; Thomas, Morgan ; Dittert, Sebastian ; Navarro, Carles ; Majewski, Maciej ; Wang, Ye ; Patel, Shivam ; Tresadern, Gary ; Ahmad, Mazen ; Moens, Vincent ; Sherman, Woody ; Sciabola, Simone ; De Fabritiis, Gianni</creator><creatorcontrib>Bou, Albert ; Thomas, Morgan ; Dittert, Sebastian ; Navarro, Carles ; Majewski, Maciej ; Wang, Ye ; Patel, Shivam ; Tresadern, Gary ; Ahmad, Mazen ; Moens, Vincent ; Sherman, Woody ; Sciabola, Simone ; De Fabritiis, Gianni</creatorcontrib><description>In recent years, reinforcement learning (RL) has emerged as a valuable tool in drug design, offering the potential to propose and optimize molecules with desired properties. However, striking a balance between capabilities, flexibility, reliability, and efficiency remains challenging due to the complexity of advanced RL algorithms and the significant reliance on specialized code. In this work, we introduce ACEGEN, a comprehensive and streamlined toolkit tailored for generative drug design, built using TorchRL, a modern RL library that offers thoroughly tested reusable components. We validate ACEGEN by benchmarking against other published generative modeling algorithms and show comparable or improved performance. We also show examples of ACEGEN applied in multiple drug discovery case studies. ACEGEN is accessible at https://github.com/acellera/acegen-open and available for use under the MIT license.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.4c00895</identifier><identifier>PMID: 39092857</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Design optimization ; Drug Design ; Drug Discovery - methods ; Machine Learning ; Machine Learning and Deep Learning ; Reusable components ; Software</subject><ispartof>Journal of chemical information and modeling, 2024-08, Vol.64 (15), p.5900-5911</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 12, 2024</rights><rights>2024 American Chemical Society 2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a345t-5f00cb53b0a73f3b877b2761b55b2074bee479d938ef3e5726c05c9b86c1f41c3</cites><orcidid>0000-0003-2605-8166 ; 0000-0002-4801-1644 ; 0000-0001-9079-1376 ; 0000-0003-3913-4877 ; 0000-0001-6027-4538 ; 0000-0001-5274-2928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00895$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.4c00895$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39092857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bou, Albert</creatorcontrib><creatorcontrib>Thomas, Morgan</creatorcontrib><creatorcontrib>Dittert, Sebastian</creatorcontrib><creatorcontrib>Navarro, Carles</creatorcontrib><creatorcontrib>Majewski, Maciej</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Patel, Shivam</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><creatorcontrib>Ahmad, Mazen</creatorcontrib><creatorcontrib>Moens, Vincent</creatorcontrib><creatorcontrib>Sherman, Woody</creatorcontrib><creatorcontrib>Sciabola, Simone</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><title>ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>In recent years, reinforcement learning (RL) has emerged as a valuable tool in drug design, offering the potential to propose and optimize molecules with desired properties. However, striking a balance between capabilities, flexibility, reliability, and efficiency remains challenging due to the complexity of advanced RL algorithms and the significant reliance on specialized code. In this work, we introduce ACEGEN, a comprehensive and streamlined toolkit tailored for generative drug design, built using TorchRL, a modern RL library that offers thoroughly tested reusable components. We validate ACEGEN by benchmarking against other published generative modeling algorithms and show comparable or improved performance. We also show examples of ACEGEN applied in multiple drug discovery case studies. ACEGEN is accessible at https://github.com/acellera/acegen-open and available for use under the MIT license.</description><subject>Algorithms</subject><subject>Design optimization</subject><subject>Drug Design</subject><subject>Drug Discovery - methods</subject><subject>Machine Learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Reusable components</subject><subject>Software</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9LIzEcxcOirLW79z0tAS8ebE0mk8nEy1JqrUJZQVzYW0jid2rKzKSbdAr-96b2B65gLgnk816-Lw-hH5QMKcnopbZxuLCuGeaWkFLyL6hHeS4HsiB_j_ZnLosTdBrjghDGZJF9RSdMEpmVXPTQ_Wg8mU5-X-EHcG3lg4UG2hWegQ6ta-fYV3gKLQS9cmvA42donNU1Hs0TFXES4OvQzfG1i9avIbx8Q8eVriN83-199Odm8ji-Hczup3fj0WygWc5XA14RYg1nhmjBKmZKIUwmCmo4NxkRuQHIhXySrISKARdZYQm30pSFpVVOLeujX1vfZWcaeLJpnKBrtQyu0eFFee3U_zete1Zzv1aU8pKynCaH851D8P86iCvVpBBQ17oF30XFSCkY5yytPjr7gC58F9qUL1HpI2XGM5EosqVs8DEGqA7TUKI2dalUl9rUpXZ1JcnP9ykOgn0_CbjYAm_S_aOf-r0CLeigpQ</recordid><startdate>20240812</startdate><enddate>20240812</enddate><creator>Bou, Albert</creator><creator>Thomas, Morgan</creator><creator>Dittert, Sebastian</creator><creator>Navarro, Carles</creator><creator>Majewski, Maciej</creator><creator>Wang, Ye</creator><creator>Patel, Shivam</creator><creator>Tresadern, Gary</creator><creator>Ahmad, Mazen</creator><creator>Moens, Vincent</creator><creator>Sherman, Woody</creator><creator>Sciabola, Simone</creator><creator>De Fabritiis, Gianni</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2605-8166</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid><orcidid>https://orcid.org/0000-0001-9079-1376</orcidid><orcidid>https://orcid.org/0000-0003-3913-4877</orcidid><orcidid>https://orcid.org/0000-0001-6027-4538</orcidid><orcidid>https://orcid.org/0000-0001-5274-2928</orcidid></search><sort><creationdate>20240812</creationdate><title>ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery</title><author>Bou, Albert ; Thomas, Morgan ; Dittert, Sebastian ; Navarro, Carles ; Majewski, Maciej ; Wang, Ye ; Patel, Shivam ; Tresadern, Gary ; Ahmad, Mazen ; Moens, Vincent ; Sherman, Woody ; Sciabola, Simone ; De Fabritiis, Gianni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-5f00cb53b0a73f3b877b2761b55b2074bee479d938ef3e5726c05c9b86c1f41c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Design optimization</topic><topic>Drug Design</topic><topic>Drug Discovery - methods</topic><topic>Machine Learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Reusable components</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bou, Albert</creatorcontrib><creatorcontrib>Thomas, Morgan</creatorcontrib><creatorcontrib>Dittert, Sebastian</creatorcontrib><creatorcontrib>Navarro, Carles</creatorcontrib><creatorcontrib>Majewski, Maciej</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Patel, Shivam</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><creatorcontrib>Ahmad, Mazen</creatorcontrib><creatorcontrib>Moens, Vincent</creatorcontrib><creatorcontrib>Sherman, Woody</creatorcontrib><creatorcontrib>Sciabola, Simone</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bou, Albert</au><au>Thomas, Morgan</au><au>Dittert, Sebastian</au><au>Navarro, Carles</au><au>Majewski, Maciej</au><au>Wang, Ye</au><au>Patel, Shivam</au><au>Tresadern, Gary</au><au>Ahmad, Mazen</au><au>Moens, Vincent</au><au>Sherman, Woody</au><au>Sciabola, Simone</au><au>De Fabritiis, Gianni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-08-12</date><risdate>2024</risdate><volume>64</volume><issue>15</issue><spage>5900</spage><epage>5911</epage><pages>5900-5911</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>In recent years, reinforcement learning (RL) has emerged as a valuable tool in drug design, offering the potential to propose and optimize molecules with desired properties. However, striking a balance between capabilities, flexibility, reliability, and efficiency remains challenging due to the complexity of advanced RL algorithms and the significant reliance on specialized code. In this work, we introduce ACEGEN, a comprehensive and streamlined toolkit tailored for generative drug design, built using TorchRL, a modern RL library that offers thoroughly tested reusable components. We validate ACEGEN by benchmarking against other published generative modeling algorithms and show comparable or improved performance. We also show examples of ACEGEN applied in multiple drug discovery case studies. ACEGEN is accessible at https://github.com/acellera/acegen-open and available for use under the MIT license.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39092857</pmid><doi>10.1021/acs.jcim.4c00895</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2605-8166</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid><orcidid>https://orcid.org/0000-0001-9079-1376</orcidid><orcidid>https://orcid.org/0000-0003-3913-4877</orcidid><orcidid>https://orcid.org/0000-0001-6027-4538</orcidid><orcidid>https://orcid.org/0000-0001-5274-2928</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2024-08, Vol.64 (15), p.5900-5911
issn 1549-9596
1549-960X
1549-960X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11581341
source MEDLINE; ACS Publications
subjects Algorithms
Design optimization
Drug Design
Drug Discovery - methods
Machine Learning
Machine Learning and Deep Learning
Reusable components
Software
title ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACEGEN:%20Reinforcement%20Learning%20of%20Generative%20Chemical%20Agents%20for%20Drug%20Discovery&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Bou,%20Albert&rft.date=2024-08-12&rft.volume=64&rft.issue=15&rft.spage=5900&rft.epage=5911&rft.pages=5900-5911&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.4c00895&rft_dat=%3Cproquest_pubme%3E3092892527%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092892527&rft_id=info:pmid/39092857&rfr_iscdi=true