Pt Single Atoms Loaded on Thin‐Layer TiO2 Electrodes: Electrochemical and Photocatalytic Features

Recently, the use of Pt in the form of single atoms (SA) has attracted considerable attention to promote the cathodic hydrogen production reaction from water in electrochemical or photocatalytic settings. First, produce suitable electrodes by Pt SA deposition on Direct current (DC)‐sputter deposited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (47), p.e2404064-n/a
Hauptverfasser: Zhou, Xin, Wang, Yue, Denisov, Nikita, Kim, Hyesung, Kim, Jihyeon, Will, Johannes, Spiecker, Erdmann, Vaskevich, Alexander, Schmuki, Patrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 47
container_start_page e2404064
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Zhou, Xin
Wang, Yue
Denisov, Nikita
Kim, Hyesung
Kim, Jihyeon
Will, Johannes
Spiecker, Erdmann
Vaskevich, Alexander
Schmuki, Patrik
description Recently, the use of Pt in the form of single atoms (SA) has attracted considerable attention to promote the cathodic hydrogen production reaction from water in electrochemical or photocatalytic settings. First, produce suitable electrodes by Pt SA deposition on Direct current (DC)‐sputter deposited titania (TiO2) layers on graphene—these electrodes allow to characterization of the electrochemical properties of Pt single atoms and their investigation in high‐resolution HAADF‐STEM. For Pt SAs loaded on TiO2, electrochemical H2 evolution shows only a very small overpotential. Concurrent with the onset of H2 evolution, agglomeration of the Pt SAs to clusters or nanoparticles (NPs) occurs. Potential cycling can be used to control SA agglomeration to variable‐size NPs. The electrochemical activity of the electrode is directly related to the SA surface density (up to reaching the activity level of a plain Pt sheet). In contrast, for photocatalytic H2 generation already a minimum SA density is sufficient to reach control by photogenerated charge carriers. In electrochemical and photocatalytic approaches a typical TOF of ≈100–150 H2 molecules per second per site can be reached. Overall, the work illustrates a straightforward approach for reliable electrochemical and photoelectrochemical investigations of SAs and discusses the extraction of critical electrochemical factors of Pt SAs on titania electrodes. An ideal electrode for single atom (SA) electrochemistry studies and concurrent microscopy is designed. Its application is shown for the hydrogen evolution reaction of Pt single atoms on thin‐film TiO2 as well as ongoing SA agglomeration during the reaction. Finally, the behavior is directly compared to the photocatalytic H2 evolution of the same platform.
doi_str_mv 10.1002/smll.202404064
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11579980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094471302</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2924-eb9c6d97f9cff3473acae32f943568df18d2032af9e73ef6057a1b632cb20423</originalsourceid><addsrcrecordid>eNpdkc9KAzEQxoMoWqtXzwEvXlrzb3cbLyJiVVhpob2HNDvbRrKbuskqvfkIPqNPYktrQU_zDfPxmxk-hC4o6VNC2HWonOszwgQRJBUHqENTynvpgMnDvabkBJ2G8EoIp0xkx-iES5okgiYdZMYRT2w9d4Dvoq8Czr0uoMC-xtOFrb8_v3K9ggZP7YjhBwcmNr6AcPOrzQIqa7TDui7weOGjNzpqt4rW4CHo2DYQztBRqV2A813tounwYXr_1MtHj8_3d3lvySQTPZhJkxYyK6UpSy4yro0GzkopeJIOipIOCkY406WEjEOZkiTTdJZyZmaMCMa76HaLXbazCgoDdWy0U8vGVrpZKa-t-jup7ULN_buiNMmkHJA14WpHaPxbCyGqygYDzukafBsUJ1KIjHKyWXb5z_rq26Zev6c45WsikyJdu-TW9WEdrPanUKI24alNeGofnpq85Pm-4z8g4JBE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131152946</pqid></control><display><type>article</type><title>Pt Single Atoms Loaded on Thin‐Layer TiO2 Electrodes: Electrochemical and Photocatalytic Features</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Xin ; Wang, Yue ; Denisov, Nikita ; Kim, Hyesung ; Kim, Jihyeon ; Will, Johannes ; Spiecker, Erdmann ; Vaskevich, Alexander ; Schmuki, Patrik</creator><creatorcontrib>Zhou, Xin ; Wang, Yue ; Denisov, Nikita ; Kim, Hyesung ; Kim, Jihyeon ; Will, Johannes ; Spiecker, Erdmann ; Vaskevich, Alexander ; Schmuki, Patrik</creatorcontrib><description>Recently, the use of Pt in the form of single atoms (SA) has attracted considerable attention to promote the cathodic hydrogen production reaction from water in electrochemical or photocatalytic settings. First, produce suitable electrodes by Pt SA deposition on Direct current (DC)‐sputter deposited titania (TiO2) layers on graphene—these electrodes allow to characterization of the electrochemical properties of Pt single atoms and their investigation in high‐resolution HAADF‐STEM. For Pt SAs loaded on TiO2, electrochemical H2 evolution shows only a very small overpotential. Concurrent with the onset of H2 evolution, agglomeration of the Pt SAs to clusters or nanoparticles (NPs) occurs. Potential cycling can be used to control SA agglomeration to variable‐size NPs. The electrochemical activity of the electrode is directly related to the SA surface density (up to reaching the activity level of a plain Pt sheet). In contrast, for photocatalytic H2 generation already a minimum SA density is sufficient to reach control by photogenerated charge carriers. In electrochemical and photocatalytic approaches a typical TOF of ≈100–150 H2 molecules per second per site can be reached. Overall, the work illustrates a straightforward approach for reliable electrochemical and photoelectrochemical investigations of SAs and discusses the extraction of critical electrochemical factors of Pt SAs on titania electrodes. An ideal electrode for single atom (SA) electrochemistry studies and concurrent microscopy is designed. Its application is shown for the hydrogen evolution reaction of Pt single atoms on thin‐film TiO2 as well as ongoing SA agglomeration during the reaction. Finally, the behavior is directly compared to the photocatalytic H2 evolution of the same platform.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202404064</identifier><identifier>PMID: 39155415</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Agglomeration ; anatase thin film electrode ; Current carriers ; Density ; Direct current ; electrocatalytic hydrogen evolution ; Electrochemical analysis ; Electrodes ; Graphene ; Hydrogen evolution ; Hydrogen production ; Nanoparticles ; Photocatalysis ; photocatalytic hydrogen evolution ; Pt Single atom ; Titanium dioxide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (47), p.e2404064-n/a</ispartof><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9208-5771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202404064$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202404064$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Denisov, Nikita</creatorcontrib><creatorcontrib>Kim, Hyesung</creatorcontrib><creatorcontrib>Kim, Jihyeon</creatorcontrib><creatorcontrib>Will, Johannes</creatorcontrib><creatorcontrib>Spiecker, Erdmann</creatorcontrib><creatorcontrib>Vaskevich, Alexander</creatorcontrib><creatorcontrib>Schmuki, Patrik</creatorcontrib><title>Pt Single Atoms Loaded on Thin‐Layer TiO2 Electrodes: Electrochemical and Photocatalytic Features</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Recently, the use of Pt in the form of single atoms (SA) has attracted considerable attention to promote the cathodic hydrogen production reaction from water in electrochemical or photocatalytic settings. First, produce suitable electrodes by Pt SA deposition on Direct current (DC)‐sputter deposited titania (TiO2) layers on graphene—these electrodes allow to characterization of the electrochemical properties of Pt single atoms and their investigation in high‐resolution HAADF‐STEM. For Pt SAs loaded on TiO2, electrochemical H2 evolution shows only a very small overpotential. Concurrent with the onset of H2 evolution, agglomeration of the Pt SAs to clusters or nanoparticles (NPs) occurs. Potential cycling can be used to control SA agglomeration to variable‐size NPs. The electrochemical activity of the electrode is directly related to the SA surface density (up to reaching the activity level of a plain Pt sheet). In contrast, for photocatalytic H2 generation already a minimum SA density is sufficient to reach control by photogenerated charge carriers. In electrochemical and photocatalytic approaches a typical TOF of ≈100–150 H2 molecules per second per site can be reached. Overall, the work illustrates a straightforward approach for reliable electrochemical and photoelectrochemical investigations of SAs and discusses the extraction of critical electrochemical factors of Pt SAs on titania electrodes. An ideal electrode for single atom (SA) electrochemistry studies and concurrent microscopy is designed. Its application is shown for the hydrogen evolution reaction of Pt single atoms on thin‐film TiO2 as well as ongoing SA agglomeration during the reaction. Finally, the behavior is directly compared to the photocatalytic H2 evolution of the same platform.</description><subject>Agglomeration</subject><subject>anatase thin film electrode</subject><subject>Current carriers</subject><subject>Density</subject><subject>Direct current</subject><subject>electrocatalytic hydrogen evolution</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Graphene</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Nanoparticles</subject><subject>Photocatalysis</subject><subject>photocatalytic hydrogen evolution</subject><subject>Pt Single atom</subject><subject>Titanium dioxide</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkc9KAzEQxoMoWqtXzwEvXlrzb3cbLyJiVVhpob2HNDvbRrKbuskqvfkIPqNPYktrQU_zDfPxmxk-hC4o6VNC2HWonOszwgQRJBUHqENTynvpgMnDvabkBJ2G8EoIp0xkx-iES5okgiYdZMYRT2w9d4Dvoq8Czr0uoMC-xtOFrb8_v3K9ggZP7YjhBwcmNr6AcPOrzQIqa7TDui7weOGjNzpqt4rW4CHo2DYQztBRqV2A813tounwYXr_1MtHj8_3d3lvySQTPZhJkxYyK6UpSy4yro0GzkopeJIOipIOCkY406WEjEOZkiTTdJZyZmaMCMa76HaLXbazCgoDdWy0U8vGVrpZKa-t-jup7ULN_buiNMmkHJA14WpHaPxbCyGqygYDzukafBsUJ1KIjHKyWXb5z_rq26Zev6c45WsikyJdu-TW9WEdrPanUKI24alNeGofnpq85Pm-4z8g4JBE</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhou, Xin</creator><creator>Wang, Yue</creator><creator>Denisov, Nikita</creator><creator>Kim, Hyesung</creator><creator>Kim, Jihyeon</creator><creator>Will, Johannes</creator><creator>Spiecker, Erdmann</creator><creator>Vaskevich, Alexander</creator><creator>Schmuki, Patrik</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9208-5771</orcidid></search><sort><creationdate>20241101</creationdate><title>Pt Single Atoms Loaded on Thin‐Layer TiO2 Electrodes: Electrochemical and Photocatalytic Features</title><author>Zhou, Xin ; Wang, Yue ; Denisov, Nikita ; Kim, Hyesung ; Kim, Jihyeon ; Will, Johannes ; Spiecker, Erdmann ; Vaskevich, Alexander ; Schmuki, Patrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2924-eb9c6d97f9cff3473acae32f943568df18d2032af9e73ef6057a1b632cb20423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agglomeration</topic><topic>anatase thin film electrode</topic><topic>Current carriers</topic><topic>Density</topic><topic>Direct current</topic><topic>electrocatalytic hydrogen evolution</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Graphene</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Nanoparticles</topic><topic>Photocatalysis</topic><topic>photocatalytic hydrogen evolution</topic><topic>Pt Single atom</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Denisov, Nikita</creatorcontrib><creatorcontrib>Kim, Hyesung</creatorcontrib><creatorcontrib>Kim, Jihyeon</creatorcontrib><creatorcontrib>Will, Johannes</creatorcontrib><creatorcontrib>Spiecker, Erdmann</creatorcontrib><creatorcontrib>Vaskevich, Alexander</creatorcontrib><creatorcontrib>Schmuki, Patrik</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xin</au><au>Wang, Yue</au><au>Denisov, Nikita</au><au>Kim, Hyesung</au><au>Kim, Jihyeon</au><au>Will, Johannes</au><au>Spiecker, Erdmann</au><au>Vaskevich, Alexander</au><au>Schmuki, Patrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pt Single Atoms Loaded on Thin‐Layer TiO2 Electrodes: Electrochemical and Photocatalytic Features</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>20</volume><issue>47</issue><spage>e2404064</spage><epage>n/a</epage><pages>e2404064-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Recently, the use of Pt in the form of single atoms (SA) has attracted considerable attention to promote the cathodic hydrogen production reaction from water in electrochemical or photocatalytic settings. First, produce suitable electrodes by Pt SA deposition on Direct current (DC)‐sputter deposited titania (TiO2) layers on graphene—these electrodes allow to characterization of the electrochemical properties of Pt single atoms and their investigation in high‐resolution HAADF‐STEM. For Pt SAs loaded on TiO2, electrochemical H2 evolution shows only a very small overpotential. Concurrent with the onset of H2 evolution, agglomeration of the Pt SAs to clusters or nanoparticles (NPs) occurs. Potential cycling can be used to control SA agglomeration to variable‐size NPs. The electrochemical activity of the electrode is directly related to the SA surface density (up to reaching the activity level of a plain Pt sheet). In contrast, for photocatalytic H2 generation already a minimum SA density is sufficient to reach control by photogenerated charge carriers. In electrochemical and photocatalytic approaches a typical TOF of ≈100–150 H2 molecules per second per site can be reached. Overall, the work illustrates a straightforward approach for reliable electrochemical and photoelectrochemical investigations of SAs and discusses the extraction of critical electrochemical factors of Pt SAs on titania electrodes. An ideal electrode for single atom (SA) electrochemistry studies and concurrent microscopy is designed. Its application is shown for the hydrogen evolution reaction of Pt single atoms on thin‐film TiO2 as well as ongoing SA agglomeration during the reaction. Finally, the behavior is directly compared to the photocatalytic H2 evolution of the same platform.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39155415</pmid><doi>10.1002/smll.202404064</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9208-5771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (47), p.e2404064-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11579980
source Wiley Online Library Journals Frontfile Complete
subjects Agglomeration
anatase thin film electrode
Current carriers
Density
Direct current
electrocatalytic hydrogen evolution
Electrochemical analysis
Electrodes
Graphene
Hydrogen evolution
Hydrogen production
Nanoparticles
Photocatalysis
photocatalytic hydrogen evolution
Pt Single atom
Titanium dioxide
title Pt Single Atoms Loaded on Thin‐Layer TiO2 Electrodes: Electrochemical and Photocatalytic Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pt%20Single%20Atoms%20Loaded%20on%20Thin%E2%80%90Layer%20TiO2%20Electrodes:%20Electrochemical%20and%20Photocatalytic%20Features&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhou,%20Xin&rft.date=2024-11-01&rft.volume=20&rft.issue=47&rft.spage=e2404064&rft.epage=n/a&rft.pages=e2404064-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202404064&rft_dat=%3Cproquest_pubme%3E3094471302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131152946&rft_id=info:pmid/39155415&rfr_iscdi=true