Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix
Optical-resolution fluorescence imaging through and within complex samples presents a major challenge due to random light scattering, with substantial implications across multiple fields. While considerable advancements in coherent imaging through severe multiple scattering have been recently introd...
Gespeichert in:
Veröffentlicht in: | Science advances 2024-11, Vol.10 (47), p.eadl5218 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 47 |
container_start_page | eadl5218 |
container_title | Science advances |
container_volume | 10 |
creator | Weinberg, Gil Sunray, Elad Katz, Ori |
description | Optical-resolution fluorescence imaging through and within complex samples presents a major challenge due to random light scattering, with substantial implications across multiple fields. While considerable advancements in coherent imaging through severe multiple scattering have been recently introduced by reflection matrix processing, approaches that tackle scattering in incoherent fluorescence imaging have been limited to sparse targets, require high-resolution control of the illumination or detection wavefronts, or require a very large number of measurements. Here, we present an approach that allows the adaptation of well-established reflection matrix techniques to scattering compensation in incoherent fluorescence imaging. We experimentally demonstrate that a small number of conventional wide-field fluorescence microscope images acquired under unknown random illuminations can effectively be used to construct a virtual fluorescence-based reflection matrix. Processing this matrix by an adapted matrix-based scattering compensation algorithm allows reconstructing megapixel-scale images from |
doi_str_mv | 10.1126/sciadv.adl5218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11578164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131498716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-d314bbab86a9390c6424f0ab0c357c945b13a237b9ac23803c973698bb44020e3</originalsourceid><addsrcrecordid>eNpVUU1PGzEQtSqqgijXHpGPvSTY649dn1CFgCKh9tKerbHjJK68drC9K_Lv6ygpoqcZzbx5M28eQl8oWVLayZtiPazmJayC6OjwAV10rBeLTvDh7F1-jq5K-UMIoVxKQdUndM6UkGKQ9AK9_EjRxxmKnx0e3QZ2_tUFvA5Tyq5YF20re5tTsWm3x3Wb07TZ4mKhVpd93OAAe5cLNnsMePa5ThCwjzZtXXax4uzWwdnqU8Qj1OxfP6OPawjFXZ3iJfr9cP_r7vvi-efj092354XtmKyLFaPcGDCDBMUUsZJ3fE3AEMtEbxUXhjJoGo2CNjAQZlXPpBqM4Zx0xLFLdHvk3U1mdKsmpWYIepf9CHmvE3j9fyf6rd6kWVMq-oFK3hi-nhhyeplcqXr07SUhQHRpKprRdqMaeiobdHmEHj5Vmua3PZTog1f66JU-edUGrt9f9wb_5wz7Cx7XlbY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131498716</pqid></control><display><type>article</type><title>Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Weinberg, Gil ; Sunray, Elad ; Katz, Ori</creator><creatorcontrib>Weinberg, Gil ; Sunray, Elad ; Katz, Ori</creatorcontrib><description>Optical-resolution fluorescence imaging through and within complex samples presents a major challenge due to random light scattering, with substantial implications across multiple fields. While considerable advancements in coherent imaging through severe multiple scattering have been recently introduced by reflection matrix processing, approaches that tackle scattering in incoherent fluorescence imaging have been limited to sparse targets, require high-resolution control of the illumination or detection wavefronts, or require a very large number of measurements. Here, we present an approach that allows the adaptation of well-established reflection matrix techniques to scattering compensation in incoherent fluorescence imaging. We experimentally demonstrate that a small number of conventional wide-field fluorescence microscope images acquired under unknown random illuminations can effectively be used to construct a virtual fluorescence-based reflection matrix. Processing this matrix by an adapted matrix-based scattering compensation algorithm allows reconstructing megapixel-scale images from <150 acquired frames, without any spatial light modulators or computationally intensive processing.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adl5218</identifier><identifier>PMID: 39565861</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Optics ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2024-11, Vol.10 (47), p.eadl5218</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-d314bbab86a9390c6424f0ab0c357c945b13a237b9ac23803c973698bb44020e3</cites><orcidid>0000-0002-3985-0673 ; 0000-0002-7746-6349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578164/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578164/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39565861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weinberg, Gil</creatorcontrib><creatorcontrib>Sunray, Elad</creatorcontrib><creatorcontrib>Katz, Ori</creatorcontrib><title>Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Optical-resolution fluorescence imaging through and within complex samples presents a major challenge due to random light scattering, with substantial implications across multiple fields. While considerable advancements in coherent imaging through severe multiple scattering have been recently introduced by reflection matrix processing, approaches that tackle scattering in incoherent fluorescence imaging have been limited to sparse targets, require high-resolution control of the illumination or detection wavefronts, or require a very large number of measurements. Here, we present an approach that allows the adaptation of well-established reflection matrix techniques to scattering compensation in incoherent fluorescence imaging. We experimentally demonstrate that a small number of conventional wide-field fluorescence microscope images acquired under unknown random illuminations can effectively be used to construct a virtual fluorescence-based reflection matrix. Processing this matrix by an adapted matrix-based scattering compensation algorithm allows reconstructing megapixel-scale images from <150 acquired frames, without any spatial light modulators or computationally intensive processing.</description><subject>Optics</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUU1PGzEQtSqqgijXHpGPvSTY649dn1CFgCKh9tKerbHjJK68drC9K_Lv6ygpoqcZzbx5M28eQl8oWVLayZtiPazmJayC6OjwAV10rBeLTvDh7F1-jq5K-UMIoVxKQdUndM6UkGKQ9AK9_EjRxxmKnx0e3QZ2_tUFvA5Tyq5YF20re5tTsWm3x3Wb07TZ4mKhVpd93OAAe5cLNnsMePa5ThCwjzZtXXax4uzWwdnqU8Qj1OxfP6OPawjFXZ3iJfr9cP_r7vvi-efj092354XtmKyLFaPcGDCDBMUUsZJ3fE3AEMtEbxUXhjJoGo2CNjAQZlXPpBqM4Zx0xLFLdHvk3U1mdKsmpWYIepf9CHmvE3j9fyf6rd6kWVMq-oFK3hi-nhhyeplcqXr07SUhQHRpKprRdqMaeiobdHmEHj5Vmua3PZTog1f66JU-edUGrt9f9wb_5wz7Cx7XlbY</recordid><startdate>20241122</startdate><enddate>20241122</enddate><creator>Weinberg, Gil</creator><creator>Sunray, Elad</creator><creator>Katz, Ori</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3985-0673</orcidid><orcidid>https://orcid.org/0000-0002-7746-6349</orcidid></search><sort><creationdate>20241122</creationdate><title>Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix</title><author>Weinberg, Gil ; Sunray, Elad ; Katz, Ori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-d314bbab86a9390c6424f0ab0c357c945b13a237b9ac23803c973698bb44020e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Optics</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weinberg, Gil</creatorcontrib><creatorcontrib>Sunray, Elad</creatorcontrib><creatorcontrib>Katz, Ori</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weinberg, Gil</au><au>Sunray, Elad</au><au>Katz, Ori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-11-22</date><risdate>2024</risdate><volume>10</volume><issue>47</issue><spage>eadl5218</spage><pages>eadl5218-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Optical-resolution fluorescence imaging through and within complex samples presents a major challenge due to random light scattering, with substantial implications across multiple fields. While considerable advancements in coherent imaging through severe multiple scattering have been recently introduced by reflection matrix processing, approaches that tackle scattering in incoherent fluorescence imaging have been limited to sparse targets, require high-resolution control of the illumination or detection wavefronts, or require a very large number of measurements. Here, we present an approach that allows the adaptation of well-established reflection matrix techniques to scattering compensation in incoherent fluorescence imaging. We experimentally demonstrate that a small number of conventional wide-field fluorescence microscope images acquired under unknown random illuminations can effectively be used to construct a virtual fluorescence-based reflection matrix. Processing this matrix by an adapted matrix-based scattering compensation algorithm allows reconstructing megapixel-scale images from <150 acquired frames, without any spatial light modulators or computationally intensive processing.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>39565861</pmid><doi>10.1126/sciadv.adl5218</doi><orcidid>https://orcid.org/0000-0002-3985-0673</orcidid><orcidid>https://orcid.org/0000-0002-7746-6349</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2024-11, Vol.10 (47), p.eadl5218 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11578164 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Optics Physical and Materials Sciences SciAdv r-articles |
title | Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A08%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20megapixel%20fluorescence%20microscopy%20through%20scattering%20layers%20by%20a%20virtual%20incoherent%20reflection%20matrix&rft.jtitle=Science%20advances&rft.au=Weinberg,%20Gil&rft.date=2024-11-22&rft.volume=10&rft.issue=47&rft.spage=eadl5218&rft.pages=eadl5218-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adl5218&rft_dat=%3Cproquest_pubme%3E3131498716%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131498716&rft_id=info:pmid/39565861&rfr_iscdi=true |