Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix

Optical-resolution fluorescence imaging through and within complex samples presents a major challenge due to random light scattering, with substantial implications across multiple fields. While considerable advancements in coherent imaging through severe multiple scattering have been recently introd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-11, Vol.10 (47), p.eadl5218
Hauptverfasser: Weinberg, Gil, Sunray, Elad, Katz, Ori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 47
container_start_page eadl5218
container_title Science advances
container_volume 10
creator Weinberg, Gil
Sunray, Elad
Katz, Ori
description Optical-resolution fluorescence imaging through and within complex samples presents a major challenge due to random light scattering, with substantial implications across multiple fields. While considerable advancements in coherent imaging through severe multiple scattering have been recently introduced by reflection matrix processing, approaches that tackle scattering in incoherent fluorescence imaging have been limited to sparse targets, require high-resolution control of the illumination or detection wavefronts, or require a very large number of measurements. Here, we present an approach that allows the adaptation of well-established reflection matrix techniques to scattering compensation in incoherent fluorescence imaging. We experimentally demonstrate that a small number of conventional wide-field fluorescence microscope images acquired under unknown random illuminations can effectively be used to construct a virtual fluorescence-based reflection matrix. Processing this matrix by an adapted matrix-based scattering compensation algorithm allows reconstructing megapixel-scale images from
doi_str_mv 10.1126/sciadv.adl5218
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11578164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131498716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-d314bbab86a9390c6424f0ab0c357c945b13a237b9ac23803c973698bb44020e3</originalsourceid><addsrcrecordid>eNpVUU1PGzEQtSqqgijXHpGPvSTY649dn1CFgCKh9tKerbHjJK68drC9K_Lv6ygpoqcZzbx5M28eQl8oWVLayZtiPazmJayC6OjwAV10rBeLTvDh7F1-jq5K-UMIoVxKQdUndM6UkGKQ9AK9_EjRxxmKnx0e3QZ2_tUFvA5Tyq5YF20re5tTsWm3x3Wb07TZ4mKhVpd93OAAe5cLNnsMePa5ThCwjzZtXXax4uzWwdnqU8Qj1OxfP6OPawjFXZ3iJfr9cP_r7vvi-efj092354XtmKyLFaPcGDCDBMUUsZJ3fE3AEMtEbxUXhjJoGo2CNjAQZlXPpBqM4Zx0xLFLdHvk3U1mdKsmpWYIepf9CHmvE3j9fyf6rd6kWVMq-oFK3hi-nhhyeplcqXr07SUhQHRpKprRdqMaeiobdHmEHj5Vmua3PZTog1f66JU-edUGrt9f9wb_5wz7Cx7XlbY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131498716</pqid></control><display><type>article</type><title>Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Weinberg, Gil ; Sunray, Elad ; Katz, Ori</creator><creatorcontrib>Weinberg, Gil ; Sunray, Elad ; Katz, Ori</creatorcontrib><description>Optical-resolution fluorescence imaging through and within complex samples presents a major challenge due to random light scattering, with substantial implications across multiple fields. While considerable advancements in coherent imaging through severe multiple scattering have been recently introduced by reflection matrix processing, approaches that tackle scattering in incoherent fluorescence imaging have been limited to sparse targets, require high-resolution control of the illumination or detection wavefronts, or require a very large number of measurements. Here, we present an approach that allows the adaptation of well-established reflection matrix techniques to scattering compensation in incoherent fluorescence imaging. We experimentally demonstrate that a small number of conventional wide-field fluorescence microscope images acquired under unknown random illuminations can effectively be used to construct a virtual fluorescence-based reflection matrix. Processing this matrix by an adapted matrix-based scattering compensation algorithm allows reconstructing megapixel-scale images from &lt;150 acquired frames, without any spatial light modulators or computationally intensive processing.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adl5218</identifier><identifier>PMID: 39565861</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Optics ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2024-11, Vol.10 (47), p.eadl5218</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-d314bbab86a9390c6424f0ab0c357c945b13a237b9ac23803c973698bb44020e3</cites><orcidid>0000-0002-3985-0673 ; 0000-0002-7746-6349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578164/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578164/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39565861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weinberg, Gil</creatorcontrib><creatorcontrib>Sunray, Elad</creatorcontrib><creatorcontrib>Katz, Ori</creatorcontrib><title>Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Optical-resolution fluorescence imaging through and within complex samples presents a major challenge due to random light scattering, with substantial implications across multiple fields. While considerable advancements in coherent imaging through severe multiple scattering have been recently introduced by reflection matrix processing, approaches that tackle scattering in incoherent fluorescence imaging have been limited to sparse targets, require high-resolution control of the illumination or detection wavefronts, or require a very large number of measurements. Here, we present an approach that allows the adaptation of well-established reflection matrix techniques to scattering compensation in incoherent fluorescence imaging. We experimentally demonstrate that a small number of conventional wide-field fluorescence microscope images acquired under unknown random illuminations can effectively be used to construct a virtual fluorescence-based reflection matrix. Processing this matrix by an adapted matrix-based scattering compensation algorithm allows reconstructing megapixel-scale images from &lt;150 acquired frames, without any spatial light modulators or computationally intensive processing.</description><subject>Optics</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUU1PGzEQtSqqgijXHpGPvSTY649dn1CFgCKh9tKerbHjJK68drC9K_Lv6ygpoqcZzbx5M28eQl8oWVLayZtiPazmJayC6OjwAV10rBeLTvDh7F1-jq5K-UMIoVxKQdUndM6UkGKQ9AK9_EjRxxmKnx0e3QZ2_tUFvA5Tyq5YF20re5tTsWm3x3Wb07TZ4mKhVpd93OAAe5cLNnsMePa5ThCwjzZtXXax4uzWwdnqU8Qj1OxfP6OPawjFXZ3iJfr9cP_r7vvi-efj092354XtmKyLFaPcGDCDBMUUsZJ3fE3AEMtEbxUXhjJoGo2CNjAQZlXPpBqM4Zx0xLFLdHvk3U1mdKsmpWYIepf9CHmvE3j9fyf6rd6kWVMq-oFK3hi-nhhyeplcqXr07SUhQHRpKprRdqMaeiobdHmEHj5Vmua3PZTog1f66JU-edUGrt9f9wb_5wz7Cx7XlbY</recordid><startdate>20241122</startdate><enddate>20241122</enddate><creator>Weinberg, Gil</creator><creator>Sunray, Elad</creator><creator>Katz, Ori</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3985-0673</orcidid><orcidid>https://orcid.org/0000-0002-7746-6349</orcidid></search><sort><creationdate>20241122</creationdate><title>Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix</title><author>Weinberg, Gil ; Sunray, Elad ; Katz, Ori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-d314bbab86a9390c6424f0ab0c357c945b13a237b9ac23803c973698bb44020e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Optics</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weinberg, Gil</creatorcontrib><creatorcontrib>Sunray, Elad</creatorcontrib><creatorcontrib>Katz, Ori</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weinberg, Gil</au><au>Sunray, Elad</au><au>Katz, Ori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-11-22</date><risdate>2024</risdate><volume>10</volume><issue>47</issue><spage>eadl5218</spage><pages>eadl5218-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Optical-resolution fluorescence imaging through and within complex samples presents a major challenge due to random light scattering, with substantial implications across multiple fields. While considerable advancements in coherent imaging through severe multiple scattering have been recently introduced by reflection matrix processing, approaches that tackle scattering in incoherent fluorescence imaging have been limited to sparse targets, require high-resolution control of the illumination or detection wavefronts, or require a very large number of measurements. Here, we present an approach that allows the adaptation of well-established reflection matrix techniques to scattering compensation in incoherent fluorescence imaging. We experimentally demonstrate that a small number of conventional wide-field fluorescence microscope images acquired under unknown random illuminations can effectively be used to construct a virtual fluorescence-based reflection matrix. Processing this matrix by an adapted matrix-based scattering compensation algorithm allows reconstructing megapixel-scale images from &lt;150 acquired frames, without any spatial light modulators or computationally intensive processing.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>39565861</pmid><doi>10.1126/sciadv.adl5218</doi><orcidid>https://orcid.org/0000-0002-3985-0673</orcidid><orcidid>https://orcid.org/0000-0002-7746-6349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2024-11, Vol.10 (47), p.eadl5218
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11578164
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Optics
Physical and Materials Sciences
SciAdv r-articles
title Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A08%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20megapixel%20fluorescence%20microscopy%20through%20scattering%20layers%20by%20a%20virtual%20incoherent%20reflection%20matrix&rft.jtitle=Science%20advances&rft.au=Weinberg,%20Gil&rft.date=2024-11-22&rft.volume=10&rft.issue=47&rft.spage=eadl5218&rft.pages=eadl5218-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adl5218&rft_dat=%3Cproquest_pubme%3E3131498716%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131498716&rft_id=info:pmid/39565861&rfr_iscdi=true