Reanalysis of genomic data in rare disease: current practice and attitudes among Australian clinical and laboratory genetics services

Reanalyzing stored genomic data over time is highly effective in increasing diagnostic yield in rare disease. Automation holds the promise of delivering the benefits of reanalysis at scale. Our study aimed to understand current reanalysis practices among Australian clinical and laboratory genetics s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of human genetics : EJHG 2024-11, Vol.32 (11), p.1428-1435
Hauptverfasser: Best, Stephanie, Fehlberg, Zoe, Richards, Christopher, Quinn, Michael C. J., Lunke, Sebastian, Spurdle, Amanda B., Kassahn, Karin S., Patel, Chirag, Vears, Danya F., Goranitis, Ilias, Lynch, Fiona, Robertson, Alan, Tudini, Emma, Christodoulou, John, Scott, Hamish, McGaughran, Julie, Stark, Zornitza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1435
container_issue 11
container_start_page 1428
container_title European journal of human genetics : EJHG
container_volume 32
creator Best, Stephanie
Fehlberg, Zoe
Richards, Christopher
Quinn, Michael C. J.
Lunke, Sebastian
Spurdle, Amanda B.
Kassahn, Karin S.
Patel, Chirag
Vears, Danya F.
Goranitis, Ilias
Lynch, Fiona
Robertson, Alan
Tudini, Emma
Christodoulou, John
Scott, Hamish
McGaughran, Julie
Stark, Zornitza
description Reanalyzing stored genomic data over time is highly effective in increasing diagnostic yield in rare disease. Automation holds the promise of delivering the benefits of reanalysis at scale. Our study aimed to understand current reanalysis practices among Australian clinical and laboratory genetics services and explore attitudes towards large-scale automated re-analysis. We collected audit data regarding testing and reanalysis volumes, policies and procedures from all Australian diagnostic laboratories providing rare disease genomic testing. A genetic health professionals’ survey explored current practices, barriers to reanalysis, preferences and attitudes towards automation. Between 2018 and 2021, Australian diagnostic laboratories performed over 25,000 new genomic tests and 950 reanalyses, predominantly in response to clinician requests. Laboratory and clinical genetic health professionals ( N  = 134) identified workforce capacity as the principal barrier to reanalysis. No specific laboratory or clinical guidelines for genomic data reanalysis or policies were identified nationally. Perceptions of acceptability and feasibility of automating reanalysis were positive, with professionals emphasizing clinical and workflow benefits. In conclusion, there is a large and rapidly growing unmet need for reanalysis of existing genomic data. Beyond developing scalable automated reanalysis pipelines, leadership and policy are needed to successfully transform service delivery models and maximize clinical benefit.
doi_str_mv 10.1038/s41431-024-01633-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11576731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060747518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-ebbd9c7065bf692918d79908d6d16e252b935797ce46fff8f19dd95580bf032b3</originalsourceid><addsrcrecordid>eNp9kcuKFDEUhgtRnHH0BVxIwI2b0qRSubmRYfAGA4LoOqSSU22G6qTNSQ30A_jepqfH8bJwlcD_nf9c_q57yuhLRrl-hSMbOevpMPaUSc57fa87ZaOSvRi5vt_-lOl-1IyfdI8QryhtomIPuxOulZFCqdPux2dwyS17jEjyTDaQ8jZ6Elx1JCZSXAESIoJDeE38WgqkSnbF-Ro9EJcCcbXGugZA4rY5bcj5irW4JbpE_BJT9G654RY35eJqLvtDF2j1SBDKdfPBx92D2S0IT27fs-7ru7dfLj70l5_ef7w4v-z9OMjawzQF4xWVYpqlGQzTQRlDdZCBSRjEMBkulFEeRjnPs56ZCcEIoek0Uz5M_Kx7c_TdrdMWgm_LtFHtrsStK3ubXbR_Kyl-s5t8bRkTSirOmsOLW4eSv6-A1W4jelgWlyCvaDmVVI1KMN3Q5_-gV3kt7diNYpwKqYyQjRqOlC8ZscB8Nw2j9hCzPcZsW8z2JmZ7sH725x53Jb9ybQA_AtiktIHyu_d_bH8CMDy2FQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130567956</pqid></control><display><type>article</type><title>Reanalysis of genomic data in rare disease: current practice and attitudes among Australian clinical and laboratory genetics services</title><source>MEDLINE</source><source>Springer Journals</source><creator>Best, Stephanie ; Fehlberg, Zoe ; Richards, Christopher ; Quinn, Michael C. J. ; Lunke, Sebastian ; Spurdle, Amanda B. ; Kassahn, Karin S. ; Patel, Chirag ; Vears, Danya F. ; Goranitis, Ilias ; Lynch, Fiona ; Robertson, Alan ; Tudini, Emma ; Christodoulou, John ; Scott, Hamish ; McGaughran, Julie ; Stark, Zornitza</creator><creatorcontrib>Best, Stephanie ; Fehlberg, Zoe ; Richards, Christopher ; Quinn, Michael C. J. ; Lunke, Sebastian ; Spurdle, Amanda B. ; Kassahn, Karin S. ; Patel, Chirag ; Vears, Danya F. ; Goranitis, Ilias ; Lynch, Fiona ; Robertson, Alan ; Tudini, Emma ; Christodoulou, John ; Scott, Hamish ; McGaughran, Julie ; Stark, Zornitza</creatorcontrib><description>Reanalyzing stored genomic data over time is highly effective in increasing diagnostic yield in rare disease. Automation holds the promise of delivering the benefits of reanalysis at scale. Our study aimed to understand current reanalysis practices among Australian clinical and laboratory genetics services and explore attitudes towards large-scale automated re-analysis. We collected audit data regarding testing and reanalysis volumes, policies and procedures from all Australian diagnostic laboratories providing rare disease genomic testing. A genetic health professionals’ survey explored current practices, barriers to reanalysis, preferences and attitudes towards automation. Between 2018 and 2021, Australian diagnostic laboratories performed over 25,000 new genomic tests and 950 reanalyses, predominantly in response to clinician requests. Laboratory and clinical genetic health professionals ( N  = 134) identified workforce capacity as the principal barrier to reanalysis. No specific laboratory or clinical guidelines for genomic data reanalysis or policies were identified nationally. Perceptions of acceptability and feasibility of automating reanalysis were positive, with professionals emphasizing clinical and workflow benefits. In conclusion, there is a large and rapidly growing unmet need for reanalysis of existing genomic data. Beyond developing scalable automated reanalysis pipelines, leadership and policy are needed to successfully transform service delivery models and maximize clinical benefit.</description><identifier>ISSN: 1018-4813</identifier><identifier>ISSN: 1476-5438</identifier><identifier>EISSN: 1476-5438</identifier><identifier>DOI: 10.1038/s41431-024-01633-8</identifier><identifier>PMID: 38796577</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>692/700/139/1512 ; 692/700/228/2050 ; Attitude of Health Personnel ; Australia ; Automation ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Cytogenetics ; Gene Expression ; Genetic analysis ; Genetic Testing - methods ; Genetic Testing - standards ; Genomic analysis ; Genomics - methods ; Genomics - standards ; Human Genetics ; Humans ; Laboratories ; Laboratories, Clinical ; Medical personnel ; Rare diseases ; Rare Diseases - diagnosis ; Rare Diseases - genetics</subject><ispartof>European journal of human genetics : EJHG, 2024-11, Vol.32 (11), p.1428-1435</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-ebbd9c7065bf692918d79908d6d16e252b935797ce46fff8f19dd95580bf032b3</cites><orcidid>0000-0002-7168-0723 ; 0000-0002-6386-6739 ; 0000-0002-5813-631X ; 0000-0001-8640-1371 ; 0000-0002-8449-206X ; 0000-0001-7946-8324 ; 0000-0002-1107-8976 ; 0000-0002-8431-0641 ; 0000-0003-1337-7897 ; 0000-0002-1662-3355 ; 0000-0002-6290-545X ; 0000-0002-0926-7858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41431-024-01633-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41431-024-01633-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38796577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Best, Stephanie</creatorcontrib><creatorcontrib>Fehlberg, Zoe</creatorcontrib><creatorcontrib>Richards, Christopher</creatorcontrib><creatorcontrib>Quinn, Michael C. J.</creatorcontrib><creatorcontrib>Lunke, Sebastian</creatorcontrib><creatorcontrib>Spurdle, Amanda B.</creatorcontrib><creatorcontrib>Kassahn, Karin S.</creatorcontrib><creatorcontrib>Patel, Chirag</creatorcontrib><creatorcontrib>Vears, Danya F.</creatorcontrib><creatorcontrib>Goranitis, Ilias</creatorcontrib><creatorcontrib>Lynch, Fiona</creatorcontrib><creatorcontrib>Robertson, Alan</creatorcontrib><creatorcontrib>Tudini, Emma</creatorcontrib><creatorcontrib>Christodoulou, John</creatorcontrib><creatorcontrib>Scott, Hamish</creatorcontrib><creatorcontrib>McGaughran, Julie</creatorcontrib><creatorcontrib>Stark, Zornitza</creatorcontrib><title>Reanalysis of genomic data in rare disease: current practice and attitudes among Australian clinical and laboratory genetics services</title><title>European journal of human genetics : EJHG</title><addtitle>Eur J Hum Genet</addtitle><addtitle>Eur J Hum Genet</addtitle><description>Reanalyzing stored genomic data over time is highly effective in increasing diagnostic yield in rare disease. Automation holds the promise of delivering the benefits of reanalysis at scale. Our study aimed to understand current reanalysis practices among Australian clinical and laboratory genetics services and explore attitudes towards large-scale automated re-analysis. We collected audit data regarding testing and reanalysis volumes, policies and procedures from all Australian diagnostic laboratories providing rare disease genomic testing. A genetic health professionals’ survey explored current practices, barriers to reanalysis, preferences and attitudes towards automation. Between 2018 and 2021, Australian diagnostic laboratories performed over 25,000 new genomic tests and 950 reanalyses, predominantly in response to clinician requests. Laboratory and clinical genetic health professionals ( N  = 134) identified workforce capacity as the principal barrier to reanalysis. No specific laboratory or clinical guidelines for genomic data reanalysis or policies were identified nationally. Perceptions of acceptability and feasibility of automating reanalysis were positive, with professionals emphasizing clinical and workflow benefits. In conclusion, there is a large and rapidly growing unmet need for reanalysis of existing genomic data. Beyond developing scalable automated reanalysis pipelines, leadership and policy are needed to successfully transform service delivery models and maximize clinical benefit.</description><subject>692/700/139/1512</subject><subject>692/700/228/2050</subject><subject>Attitude of Health Personnel</subject><subject>Australia</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cytogenetics</subject><subject>Gene Expression</subject><subject>Genetic analysis</subject><subject>Genetic Testing - methods</subject><subject>Genetic Testing - standards</subject><subject>Genomic analysis</subject><subject>Genomics - methods</subject><subject>Genomics - standards</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Laboratories, Clinical</subject><subject>Medical personnel</subject><subject>Rare diseases</subject><subject>Rare Diseases - diagnosis</subject><subject>Rare Diseases - genetics</subject><issn>1018-4813</issn><issn>1476-5438</issn><issn>1476-5438</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kcuKFDEUhgtRnHH0BVxIwI2b0qRSubmRYfAGA4LoOqSSU22G6qTNSQ30A_jepqfH8bJwlcD_nf9c_q57yuhLRrl-hSMbOevpMPaUSc57fa87ZaOSvRi5vt_-lOl-1IyfdI8QryhtomIPuxOulZFCqdPux2dwyS17jEjyTDaQ8jZ6Elx1JCZSXAESIoJDeE38WgqkSnbF-Ro9EJcCcbXGugZA4rY5bcj5irW4JbpE_BJT9G654RY35eJqLvtDF2j1SBDKdfPBx92D2S0IT27fs-7ru7dfLj70l5_ef7w4v-z9OMjawzQF4xWVYpqlGQzTQRlDdZCBSRjEMBkulFEeRjnPs56ZCcEIoek0Uz5M_Kx7c_TdrdMWgm_LtFHtrsStK3ubXbR_Kyl-s5t8bRkTSirOmsOLW4eSv6-A1W4jelgWlyCvaDmVVI1KMN3Q5_-gV3kt7diNYpwKqYyQjRqOlC8ZscB8Nw2j9hCzPcZsW8z2JmZ7sH725x53Jb9ybQA_AtiktIHyu_d_bH8CMDy2FQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Best, Stephanie</creator><creator>Fehlberg, Zoe</creator><creator>Richards, Christopher</creator><creator>Quinn, Michael C. J.</creator><creator>Lunke, Sebastian</creator><creator>Spurdle, Amanda B.</creator><creator>Kassahn, Karin S.</creator><creator>Patel, Chirag</creator><creator>Vears, Danya F.</creator><creator>Goranitis, Ilias</creator><creator>Lynch, Fiona</creator><creator>Robertson, Alan</creator><creator>Tudini, Emma</creator><creator>Christodoulou, John</creator><creator>Scott, Hamish</creator><creator>McGaughran, Julie</creator><creator>Stark, Zornitza</creator><general>Springer International Publishing</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7168-0723</orcidid><orcidid>https://orcid.org/0000-0002-6386-6739</orcidid><orcidid>https://orcid.org/0000-0002-5813-631X</orcidid><orcidid>https://orcid.org/0000-0001-8640-1371</orcidid><orcidid>https://orcid.org/0000-0002-8449-206X</orcidid><orcidid>https://orcid.org/0000-0001-7946-8324</orcidid><orcidid>https://orcid.org/0000-0002-1107-8976</orcidid><orcidid>https://orcid.org/0000-0002-8431-0641</orcidid><orcidid>https://orcid.org/0000-0003-1337-7897</orcidid><orcidid>https://orcid.org/0000-0002-1662-3355</orcidid><orcidid>https://orcid.org/0000-0002-6290-545X</orcidid><orcidid>https://orcid.org/0000-0002-0926-7858</orcidid></search><sort><creationdate>20241101</creationdate><title>Reanalysis of genomic data in rare disease: current practice and attitudes among Australian clinical and laboratory genetics services</title><author>Best, Stephanie ; Fehlberg, Zoe ; Richards, Christopher ; Quinn, Michael C. J. ; Lunke, Sebastian ; Spurdle, Amanda B. ; Kassahn, Karin S. ; Patel, Chirag ; Vears, Danya F. ; Goranitis, Ilias ; Lynch, Fiona ; Robertson, Alan ; Tudini, Emma ; Christodoulou, John ; Scott, Hamish ; McGaughran, Julie ; Stark, Zornitza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-ebbd9c7065bf692918d79908d6d16e252b935797ce46fff8f19dd95580bf032b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>692/700/139/1512</topic><topic>692/700/228/2050</topic><topic>Attitude of Health Personnel</topic><topic>Australia</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cytogenetics</topic><topic>Gene Expression</topic><topic>Genetic analysis</topic><topic>Genetic Testing - methods</topic><topic>Genetic Testing - standards</topic><topic>Genomic analysis</topic><topic>Genomics - methods</topic><topic>Genomics - standards</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Laboratories, Clinical</topic><topic>Medical personnel</topic><topic>Rare diseases</topic><topic>Rare Diseases - diagnosis</topic><topic>Rare Diseases - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Best, Stephanie</creatorcontrib><creatorcontrib>Fehlberg, Zoe</creatorcontrib><creatorcontrib>Richards, Christopher</creatorcontrib><creatorcontrib>Quinn, Michael C. J.</creatorcontrib><creatorcontrib>Lunke, Sebastian</creatorcontrib><creatorcontrib>Spurdle, Amanda B.</creatorcontrib><creatorcontrib>Kassahn, Karin S.</creatorcontrib><creatorcontrib>Patel, Chirag</creatorcontrib><creatorcontrib>Vears, Danya F.</creatorcontrib><creatorcontrib>Goranitis, Ilias</creatorcontrib><creatorcontrib>Lynch, Fiona</creatorcontrib><creatorcontrib>Robertson, Alan</creatorcontrib><creatorcontrib>Tudini, Emma</creatorcontrib><creatorcontrib>Christodoulou, John</creatorcontrib><creatorcontrib>Scott, Hamish</creatorcontrib><creatorcontrib>McGaughran, Julie</creatorcontrib><creatorcontrib>Stark, Zornitza</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of human genetics : EJHG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Best, Stephanie</au><au>Fehlberg, Zoe</au><au>Richards, Christopher</au><au>Quinn, Michael C. J.</au><au>Lunke, Sebastian</au><au>Spurdle, Amanda B.</au><au>Kassahn, Karin S.</au><au>Patel, Chirag</au><au>Vears, Danya F.</au><au>Goranitis, Ilias</au><au>Lynch, Fiona</au><au>Robertson, Alan</au><au>Tudini, Emma</au><au>Christodoulou, John</au><au>Scott, Hamish</au><au>McGaughran, Julie</au><au>Stark, Zornitza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reanalysis of genomic data in rare disease: current practice and attitudes among Australian clinical and laboratory genetics services</atitle><jtitle>European journal of human genetics : EJHG</jtitle><stitle>Eur J Hum Genet</stitle><addtitle>Eur J Hum Genet</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>32</volume><issue>11</issue><spage>1428</spage><epage>1435</epage><pages>1428-1435</pages><issn>1018-4813</issn><issn>1476-5438</issn><eissn>1476-5438</eissn><abstract>Reanalyzing stored genomic data over time is highly effective in increasing diagnostic yield in rare disease. Automation holds the promise of delivering the benefits of reanalysis at scale. Our study aimed to understand current reanalysis practices among Australian clinical and laboratory genetics services and explore attitudes towards large-scale automated re-analysis. We collected audit data regarding testing and reanalysis volumes, policies and procedures from all Australian diagnostic laboratories providing rare disease genomic testing. A genetic health professionals’ survey explored current practices, barriers to reanalysis, preferences and attitudes towards automation. Between 2018 and 2021, Australian diagnostic laboratories performed over 25,000 new genomic tests and 950 reanalyses, predominantly in response to clinician requests. Laboratory and clinical genetic health professionals ( N  = 134) identified workforce capacity as the principal barrier to reanalysis. No specific laboratory or clinical guidelines for genomic data reanalysis or policies were identified nationally. Perceptions of acceptability and feasibility of automating reanalysis were positive, with professionals emphasizing clinical and workflow benefits. In conclusion, there is a large and rapidly growing unmet need for reanalysis of existing genomic data. Beyond developing scalable automated reanalysis pipelines, leadership and policy are needed to successfully transform service delivery models and maximize clinical benefit.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38796577</pmid><doi>10.1038/s41431-024-01633-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7168-0723</orcidid><orcidid>https://orcid.org/0000-0002-6386-6739</orcidid><orcidid>https://orcid.org/0000-0002-5813-631X</orcidid><orcidid>https://orcid.org/0000-0001-8640-1371</orcidid><orcidid>https://orcid.org/0000-0002-8449-206X</orcidid><orcidid>https://orcid.org/0000-0001-7946-8324</orcidid><orcidid>https://orcid.org/0000-0002-1107-8976</orcidid><orcidid>https://orcid.org/0000-0002-8431-0641</orcidid><orcidid>https://orcid.org/0000-0003-1337-7897</orcidid><orcidid>https://orcid.org/0000-0002-1662-3355</orcidid><orcidid>https://orcid.org/0000-0002-6290-545X</orcidid><orcidid>https://orcid.org/0000-0002-0926-7858</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1018-4813
ispartof European journal of human genetics : EJHG, 2024-11, Vol.32 (11), p.1428-1435
issn 1018-4813
1476-5438
1476-5438
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11576731
source MEDLINE; Springer Journals
subjects 692/700/139/1512
692/700/228/2050
Attitude of Health Personnel
Australia
Automation
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Cytogenetics
Gene Expression
Genetic analysis
Genetic Testing - methods
Genetic Testing - standards
Genomic analysis
Genomics - methods
Genomics - standards
Human Genetics
Humans
Laboratories
Laboratories, Clinical
Medical personnel
Rare diseases
Rare Diseases - diagnosis
Rare Diseases - genetics
title Reanalysis of genomic data in rare disease: current practice and attitudes among Australian clinical and laboratory genetics services
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reanalysis%20of%20genomic%20data%20in%20rare%20disease:%20current%20practice%20and%20attitudes%20among%20Australian%20clinical%20and%20laboratory%20genetics%20services&rft.jtitle=European%20journal%20of%20human%20genetics%20:%20EJHG&rft.au=Best,%20Stephanie&rft.date=2024-11-01&rft.volume=32&rft.issue=11&rft.spage=1428&rft.epage=1435&rft.pages=1428-1435&rft.issn=1018-4813&rft.eissn=1476-5438&rft_id=info:doi/10.1038/s41431-024-01633-8&rft_dat=%3Cproquest_pubme%3E3060747518%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130567956&rft_id=info:pmid/38796577&rfr_iscdi=true