Nuclear instance segmentation and tracking for preimplantation mouse embryos
For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the pe...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2024-11, Vol.151 (21) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Development (Cambridge) |
container_volume | 151 |
creator | Nunley, Hayden Shao, Binglun Denberg, David Grover, Prateek Singh, Jaspreet Avdeeva, Maria Joyce, Bradley Kim-Yip, Rebecca Kohrman, Abraham Biswas, Abhishek Watters, Aaron Gal, Zsombor Kickuth, Alison Chalifoux, Madeleine Shvartsman, Stanislav Y Brown, Lisa M Posfai, Eszter |
description | For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data. Here, we first report a previously unreported mouse line expressing near-infrared nuclear reporter H2B-miRFP720. We then generate a dataset (termed BlastoSPIM) of 3D images of H2B-miRFP720-expressing embryos with ground truth for nuclear instances. Using BlastoSPIM, we benchmark seven convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method. With our BlastoSPIM-trained Stardist-3D models, we construct a complete pipeline for nuclear instance segmentation and lineage tracking from the eight-cell stage to the end of preimplantation development (>100 nuclei). Finally, we demonstrate the usefulness of BlastoSPIM as pre-train data for related problems, both for a different imaging modality and for different model systems. |
doi_str_mv | 10.1242/dev.202817 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11574361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113754272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-5cd66c620362dba1eb538e69cd4a4e40a2357830351cf485aa33926002bbb1fb3</originalsourceid><addsrcrecordid>eNpVkE1LxDAQhoMo7rp68QdIjyJUk0yTtCeRxS9Y9KLnkKbTtdovk3Zh_72R_UBPc5iHd955CDln9JrxhN8UuLrmlKdMHZApS5SKM8azQzKlmaAxyzI2ISfef1JKQSp1TCaQgQKQckoWL6Ot0bioav1gWouRx2WD7WCGqmsj0xbR4Iz9qtplVHYu6h1WTV-bHdB0o8cIm9ytO39KjkpTezzbzhl5f7h_mz_Fi9fH5_ndIrYc-BALW0hpJQ9teJEbhrmAFGVmi8QkmFDDQagUKAhmyyQVxgBkXFLK8zxnZQ4zcrvJ7ce8wcKGus7UundVY9xad6bS_zdt9aGX3UozJlQCkoWEy22C675H9INuKm-xDo9h-EgDY6BEwhUP6NUGta7z3mG5v8Oo_vWvg3-98R_gi7_N9uhOOPwA3zGCkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113754272</pqid></control><display><type>article</type><title>Nuclear instance segmentation and tracking for preimplantation mouse embryos</title><source>MEDLINE</source><source>Company of Biologists</source><creator>Nunley, Hayden ; Shao, Binglun ; Denberg, David ; Grover, Prateek ; Singh, Jaspreet ; Avdeeva, Maria ; Joyce, Bradley ; Kim-Yip, Rebecca ; Kohrman, Abraham ; Biswas, Abhishek ; Watters, Aaron ; Gal, Zsombor ; Kickuth, Alison ; Chalifoux, Madeleine ; Shvartsman, Stanislav Y ; Brown, Lisa M ; Posfai, Eszter</creator><creatorcontrib>Nunley, Hayden ; Shao, Binglun ; Denberg, David ; Grover, Prateek ; Singh, Jaspreet ; Avdeeva, Maria ; Joyce, Bradley ; Kim-Yip, Rebecca ; Kohrman, Abraham ; Biswas, Abhishek ; Watters, Aaron ; Gal, Zsombor ; Kickuth, Alison ; Chalifoux, Madeleine ; Shvartsman, Stanislav Y ; Brown, Lisa M ; Posfai, Eszter</creatorcontrib><description>For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data. Here, we first report a previously unreported mouse line expressing near-infrared nuclear reporter H2B-miRFP720. We then generate a dataset (termed BlastoSPIM) of 3D images of H2B-miRFP720-expressing embryos with ground truth for nuclear instances. Using BlastoSPIM, we benchmark seven convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method. With our BlastoSPIM-trained Stardist-3D models, we construct a complete pipeline for nuclear instance segmentation and lineage tracking from the eight-cell stage to the end of preimplantation development (>100 nuclei). Finally, we demonstrate the usefulness of BlastoSPIM as pre-train data for related problems, both for a different imaging modality and for different model systems.</description><identifier>ISSN: 0950-1991</identifier><identifier>ISSN: 1477-9129</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.202817</identifier><identifier>PMID: 39373366</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Animals ; Blastocyst - cytology ; Cell Nucleus - metabolism ; Embryonic Development ; Female ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Mice ; Neural Networks, Computer ; Techniques and Resources ; Time-Lapse Imaging - methods</subject><ispartof>Development (Cambridge), 2024-11, Vol.151 (21)</ispartof><rights>2024. Published by The Company of Biologists Ltd.</rights><rights>2024. Published by The Company of Biologists Ltd 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c232t-5cd66c620362dba1eb538e69cd4a4e40a2357830351cf485aa33926002bbb1fb3</cites><orcidid>0000-0002-6366-2269 ; 0000-0002-8074-2543 ; 0000-0001-6464-804X ; 0000-0002-3061-7971 ; 0009-0007-3223-0299 ; 0009-0003-1981-5162 ; 0000-0001-7798-0746 ; 0000-0002-9152-9334 ; 0000-0002-7937-0201 ; 0000-0003-0495-7080 ; 0000-0002-4634-9422 ; 0000-0002-3726-1090 ; 0000-0002-8571-7902 ; 0000-0002-9464-3255 ; 0009-0004-7616-7090 ; 0000-0002-4871-6652 ; 0000-0002-4458-6715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3665,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39373366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nunley, Hayden</creatorcontrib><creatorcontrib>Shao, Binglun</creatorcontrib><creatorcontrib>Denberg, David</creatorcontrib><creatorcontrib>Grover, Prateek</creatorcontrib><creatorcontrib>Singh, Jaspreet</creatorcontrib><creatorcontrib>Avdeeva, Maria</creatorcontrib><creatorcontrib>Joyce, Bradley</creatorcontrib><creatorcontrib>Kim-Yip, Rebecca</creatorcontrib><creatorcontrib>Kohrman, Abraham</creatorcontrib><creatorcontrib>Biswas, Abhishek</creatorcontrib><creatorcontrib>Watters, Aaron</creatorcontrib><creatorcontrib>Gal, Zsombor</creatorcontrib><creatorcontrib>Kickuth, Alison</creatorcontrib><creatorcontrib>Chalifoux, Madeleine</creatorcontrib><creatorcontrib>Shvartsman, Stanislav Y</creatorcontrib><creatorcontrib>Brown, Lisa M</creatorcontrib><creatorcontrib>Posfai, Eszter</creatorcontrib><title>Nuclear instance segmentation and tracking for preimplantation mouse embryos</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data. Here, we first report a previously unreported mouse line expressing near-infrared nuclear reporter H2B-miRFP720. We then generate a dataset (termed BlastoSPIM) of 3D images of H2B-miRFP720-expressing embryos with ground truth for nuclear instances. Using BlastoSPIM, we benchmark seven convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method. With our BlastoSPIM-trained Stardist-3D models, we construct a complete pipeline for nuclear instance segmentation and lineage tracking from the eight-cell stage to the end of preimplantation development (>100 nuclei). Finally, we demonstrate the usefulness of BlastoSPIM as pre-train data for related problems, both for a different imaging modality and for different model systems.</description><subject>Animals</subject><subject>Blastocyst - cytology</subject><subject>Cell Nucleus - metabolism</subject><subject>Embryonic Development</subject><subject>Female</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Mice</subject><subject>Neural Networks, Computer</subject><subject>Techniques and Resources</subject><subject>Time-Lapse Imaging - methods</subject><issn>0950-1991</issn><issn>1477-9129</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1LxDAQhoMo7rp68QdIjyJUk0yTtCeRxS9Y9KLnkKbTtdovk3Zh_72R_UBPc5iHd955CDln9JrxhN8UuLrmlKdMHZApS5SKM8azQzKlmaAxyzI2ISfef1JKQSp1TCaQgQKQckoWL6Ot0bioav1gWouRx2WD7WCGqmsj0xbR4Iz9qtplVHYu6h1WTV-bHdB0o8cIm9ytO39KjkpTezzbzhl5f7h_mz_Fi9fH5_ndIrYc-BALW0hpJQ9teJEbhrmAFGVmi8QkmFDDQagUKAhmyyQVxgBkXFLK8zxnZQ4zcrvJ7ce8wcKGus7UundVY9xad6bS_zdt9aGX3UozJlQCkoWEy22C675H9INuKm-xDo9h-EgDY6BEwhUP6NUGta7z3mG5v8Oo_vWvg3-98R_gi7_N9uhOOPwA3zGCkA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Nunley, Hayden</creator><creator>Shao, Binglun</creator><creator>Denberg, David</creator><creator>Grover, Prateek</creator><creator>Singh, Jaspreet</creator><creator>Avdeeva, Maria</creator><creator>Joyce, Bradley</creator><creator>Kim-Yip, Rebecca</creator><creator>Kohrman, Abraham</creator><creator>Biswas, Abhishek</creator><creator>Watters, Aaron</creator><creator>Gal, Zsombor</creator><creator>Kickuth, Alison</creator><creator>Chalifoux, Madeleine</creator><creator>Shvartsman, Stanislav Y</creator><creator>Brown, Lisa M</creator><creator>Posfai, Eszter</creator><general>The Company of Biologists Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6366-2269</orcidid><orcidid>https://orcid.org/0000-0002-8074-2543</orcidid><orcidid>https://orcid.org/0000-0001-6464-804X</orcidid><orcidid>https://orcid.org/0000-0002-3061-7971</orcidid><orcidid>https://orcid.org/0009-0007-3223-0299</orcidid><orcidid>https://orcid.org/0009-0003-1981-5162</orcidid><orcidid>https://orcid.org/0000-0001-7798-0746</orcidid><orcidid>https://orcid.org/0000-0002-9152-9334</orcidid><orcidid>https://orcid.org/0000-0002-7937-0201</orcidid><orcidid>https://orcid.org/0000-0003-0495-7080</orcidid><orcidid>https://orcid.org/0000-0002-4634-9422</orcidid><orcidid>https://orcid.org/0000-0002-3726-1090</orcidid><orcidid>https://orcid.org/0000-0002-8571-7902</orcidid><orcidid>https://orcid.org/0000-0002-9464-3255</orcidid><orcidid>https://orcid.org/0009-0004-7616-7090</orcidid><orcidid>https://orcid.org/0000-0002-4871-6652</orcidid><orcidid>https://orcid.org/0000-0002-4458-6715</orcidid></search><sort><creationdate>20241101</creationdate><title>Nuclear instance segmentation and tracking for preimplantation mouse embryos</title><author>Nunley, Hayden ; Shao, Binglun ; Denberg, David ; Grover, Prateek ; Singh, Jaspreet ; Avdeeva, Maria ; Joyce, Bradley ; Kim-Yip, Rebecca ; Kohrman, Abraham ; Biswas, Abhishek ; Watters, Aaron ; Gal, Zsombor ; Kickuth, Alison ; Chalifoux, Madeleine ; Shvartsman, Stanislav Y ; Brown, Lisa M ; Posfai, Eszter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-5cd66c620362dba1eb538e69cd4a4e40a2357830351cf485aa33926002bbb1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Blastocyst - cytology</topic><topic>Cell Nucleus - metabolism</topic><topic>Embryonic Development</topic><topic>Female</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Mice</topic><topic>Neural Networks, Computer</topic><topic>Techniques and Resources</topic><topic>Time-Lapse Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nunley, Hayden</creatorcontrib><creatorcontrib>Shao, Binglun</creatorcontrib><creatorcontrib>Denberg, David</creatorcontrib><creatorcontrib>Grover, Prateek</creatorcontrib><creatorcontrib>Singh, Jaspreet</creatorcontrib><creatorcontrib>Avdeeva, Maria</creatorcontrib><creatorcontrib>Joyce, Bradley</creatorcontrib><creatorcontrib>Kim-Yip, Rebecca</creatorcontrib><creatorcontrib>Kohrman, Abraham</creatorcontrib><creatorcontrib>Biswas, Abhishek</creatorcontrib><creatorcontrib>Watters, Aaron</creatorcontrib><creatorcontrib>Gal, Zsombor</creatorcontrib><creatorcontrib>Kickuth, Alison</creatorcontrib><creatorcontrib>Chalifoux, Madeleine</creatorcontrib><creatorcontrib>Shvartsman, Stanislav Y</creatorcontrib><creatorcontrib>Brown, Lisa M</creatorcontrib><creatorcontrib>Posfai, Eszter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nunley, Hayden</au><au>Shao, Binglun</au><au>Denberg, David</au><au>Grover, Prateek</au><au>Singh, Jaspreet</au><au>Avdeeva, Maria</au><au>Joyce, Bradley</au><au>Kim-Yip, Rebecca</au><au>Kohrman, Abraham</au><au>Biswas, Abhishek</au><au>Watters, Aaron</au><au>Gal, Zsombor</au><au>Kickuth, Alison</au><au>Chalifoux, Madeleine</au><au>Shvartsman, Stanislav Y</au><au>Brown, Lisa M</au><au>Posfai, Eszter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear instance segmentation and tracking for preimplantation mouse embryos</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>151</volume><issue>21</issue><issn>0950-1991</issn><issn>1477-9129</issn><eissn>1477-9129</eissn><abstract>For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data. Here, we first report a previously unreported mouse line expressing near-infrared nuclear reporter H2B-miRFP720. We then generate a dataset (termed BlastoSPIM) of 3D images of H2B-miRFP720-expressing embryos with ground truth for nuclear instances. Using BlastoSPIM, we benchmark seven convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method. With our BlastoSPIM-trained Stardist-3D models, we construct a complete pipeline for nuclear instance segmentation and lineage tracking from the eight-cell stage to the end of preimplantation development (>100 nuclei). Finally, we demonstrate the usefulness of BlastoSPIM as pre-train data for related problems, both for a different imaging modality and for different model systems.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>39373366</pmid><doi>10.1242/dev.202817</doi><orcidid>https://orcid.org/0000-0002-6366-2269</orcidid><orcidid>https://orcid.org/0000-0002-8074-2543</orcidid><orcidid>https://orcid.org/0000-0001-6464-804X</orcidid><orcidid>https://orcid.org/0000-0002-3061-7971</orcidid><orcidid>https://orcid.org/0009-0007-3223-0299</orcidid><orcidid>https://orcid.org/0009-0003-1981-5162</orcidid><orcidid>https://orcid.org/0000-0001-7798-0746</orcidid><orcidid>https://orcid.org/0000-0002-9152-9334</orcidid><orcidid>https://orcid.org/0000-0002-7937-0201</orcidid><orcidid>https://orcid.org/0000-0003-0495-7080</orcidid><orcidid>https://orcid.org/0000-0002-4634-9422</orcidid><orcidid>https://orcid.org/0000-0002-3726-1090</orcidid><orcidid>https://orcid.org/0000-0002-8571-7902</orcidid><orcidid>https://orcid.org/0000-0002-9464-3255</orcidid><orcidid>https://orcid.org/0009-0004-7616-7090</orcidid><orcidid>https://orcid.org/0000-0002-4871-6652</orcidid><orcidid>https://orcid.org/0000-0002-4458-6715</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-1991 |
ispartof | Development (Cambridge), 2024-11, Vol.151 (21) |
issn | 0950-1991 1477-9129 1477-9129 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11574361 |
source | MEDLINE; Company of Biologists |
subjects | Animals Blastocyst - cytology Cell Nucleus - metabolism Embryonic Development Female Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Mice Neural Networks, Computer Techniques and Resources Time-Lapse Imaging - methods |
title | Nuclear instance segmentation and tracking for preimplantation mouse embryos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20instance%20segmentation%20and%20tracking%20for%20preimplantation%20mouse%20embryos&rft.jtitle=Development%20(Cambridge)&rft.au=Nunley,%20Hayden&rft.date=2024-11-01&rft.volume=151&rft.issue=21&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.202817&rft_dat=%3Cproquest_pubme%3E3113754272%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113754272&rft_id=info:pmid/39373366&rfr_iscdi=true |