Nuclear instance segmentation and tracking for preimplantation mouse embryos

For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2024-11, Vol.151 (21)
Hauptverfasser: Nunley, Hayden, Shao, Binglun, Denberg, David, Grover, Prateek, Singh, Jaspreet, Avdeeva, Maria, Joyce, Bradley, Kim-Yip, Rebecca, Kohrman, Abraham, Biswas, Abhishek, Watters, Aaron, Gal, Zsombor, Kickuth, Alison, Chalifoux, Madeleine, Shvartsman, Stanislav Y, Brown, Lisa M, Posfai, Eszter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Development (Cambridge)
container_volume 151
creator Nunley, Hayden
Shao, Binglun
Denberg, David
Grover, Prateek
Singh, Jaspreet
Avdeeva, Maria
Joyce, Bradley
Kim-Yip, Rebecca
Kohrman, Abraham
Biswas, Abhishek
Watters, Aaron
Gal, Zsombor
Kickuth, Alison
Chalifoux, Madeleine
Shvartsman, Stanislav Y
Brown, Lisa M
Posfai, Eszter
description For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data. Here, we first report a previously unreported mouse line expressing near-infrared nuclear reporter H2B-miRFP720. We then generate a dataset (termed BlastoSPIM) of 3D images of H2B-miRFP720-expressing embryos with ground truth for nuclear instances. Using BlastoSPIM, we benchmark seven convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method. With our BlastoSPIM-trained Stardist-3D models, we construct a complete pipeline for nuclear instance segmentation and lineage tracking from the eight-cell stage to the end of preimplantation development (>100 nuclei). Finally, we demonstrate the usefulness of BlastoSPIM as pre-train data for related problems, both for a different imaging modality and for different model systems.
doi_str_mv 10.1242/dev.202817
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11574361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113754272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-5cd66c620362dba1eb538e69cd4a4e40a2357830351cf485aa33926002bbb1fb3</originalsourceid><addsrcrecordid>eNpVkE1LxDAQhoMo7rp68QdIjyJUk0yTtCeRxS9Y9KLnkKbTtdovk3Zh_72R_UBPc5iHd955CDln9JrxhN8UuLrmlKdMHZApS5SKM8azQzKlmaAxyzI2ISfef1JKQSp1TCaQgQKQckoWL6Ot0bioav1gWouRx2WD7WCGqmsj0xbR4Iz9qtplVHYu6h1WTV-bHdB0o8cIm9ytO39KjkpTezzbzhl5f7h_mz_Fi9fH5_ndIrYc-BALW0hpJQ9teJEbhrmAFGVmi8QkmFDDQagUKAhmyyQVxgBkXFLK8zxnZQ4zcrvJ7ce8wcKGus7UundVY9xad6bS_zdt9aGX3UozJlQCkoWEy22C675H9INuKm-xDo9h-EgDY6BEwhUP6NUGta7z3mG5v8Oo_vWvg3-98R_gi7_N9uhOOPwA3zGCkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113754272</pqid></control><display><type>article</type><title>Nuclear instance segmentation and tracking for preimplantation mouse embryos</title><source>MEDLINE</source><source>Company of Biologists</source><creator>Nunley, Hayden ; Shao, Binglun ; Denberg, David ; Grover, Prateek ; Singh, Jaspreet ; Avdeeva, Maria ; Joyce, Bradley ; Kim-Yip, Rebecca ; Kohrman, Abraham ; Biswas, Abhishek ; Watters, Aaron ; Gal, Zsombor ; Kickuth, Alison ; Chalifoux, Madeleine ; Shvartsman, Stanislav Y ; Brown, Lisa M ; Posfai, Eszter</creator><creatorcontrib>Nunley, Hayden ; Shao, Binglun ; Denberg, David ; Grover, Prateek ; Singh, Jaspreet ; Avdeeva, Maria ; Joyce, Bradley ; Kim-Yip, Rebecca ; Kohrman, Abraham ; Biswas, Abhishek ; Watters, Aaron ; Gal, Zsombor ; Kickuth, Alison ; Chalifoux, Madeleine ; Shvartsman, Stanislav Y ; Brown, Lisa M ; Posfai, Eszter</creatorcontrib><description>For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data. Here, we first report a previously unreported mouse line expressing near-infrared nuclear reporter H2B-miRFP720. We then generate a dataset (termed BlastoSPIM) of 3D images of H2B-miRFP720-expressing embryos with ground truth for nuclear instances. Using BlastoSPIM, we benchmark seven convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method. With our BlastoSPIM-trained Stardist-3D models, we construct a complete pipeline for nuclear instance segmentation and lineage tracking from the eight-cell stage to the end of preimplantation development (&gt;100 nuclei). Finally, we demonstrate the usefulness of BlastoSPIM as pre-train data for related problems, both for a different imaging modality and for different model systems.</description><identifier>ISSN: 0950-1991</identifier><identifier>ISSN: 1477-9129</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.202817</identifier><identifier>PMID: 39373366</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Animals ; Blastocyst - cytology ; Cell Nucleus - metabolism ; Embryonic Development ; Female ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Mice ; Neural Networks, Computer ; Techniques and Resources ; Time-Lapse Imaging - methods</subject><ispartof>Development (Cambridge), 2024-11, Vol.151 (21)</ispartof><rights>2024. Published by The Company of Biologists Ltd.</rights><rights>2024. Published by The Company of Biologists Ltd 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c232t-5cd66c620362dba1eb538e69cd4a4e40a2357830351cf485aa33926002bbb1fb3</cites><orcidid>0000-0002-6366-2269 ; 0000-0002-8074-2543 ; 0000-0001-6464-804X ; 0000-0002-3061-7971 ; 0009-0007-3223-0299 ; 0009-0003-1981-5162 ; 0000-0001-7798-0746 ; 0000-0002-9152-9334 ; 0000-0002-7937-0201 ; 0000-0003-0495-7080 ; 0000-0002-4634-9422 ; 0000-0002-3726-1090 ; 0000-0002-8571-7902 ; 0000-0002-9464-3255 ; 0009-0004-7616-7090 ; 0000-0002-4871-6652 ; 0000-0002-4458-6715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3665,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39373366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nunley, Hayden</creatorcontrib><creatorcontrib>Shao, Binglun</creatorcontrib><creatorcontrib>Denberg, David</creatorcontrib><creatorcontrib>Grover, Prateek</creatorcontrib><creatorcontrib>Singh, Jaspreet</creatorcontrib><creatorcontrib>Avdeeva, Maria</creatorcontrib><creatorcontrib>Joyce, Bradley</creatorcontrib><creatorcontrib>Kim-Yip, Rebecca</creatorcontrib><creatorcontrib>Kohrman, Abraham</creatorcontrib><creatorcontrib>Biswas, Abhishek</creatorcontrib><creatorcontrib>Watters, Aaron</creatorcontrib><creatorcontrib>Gal, Zsombor</creatorcontrib><creatorcontrib>Kickuth, Alison</creatorcontrib><creatorcontrib>Chalifoux, Madeleine</creatorcontrib><creatorcontrib>Shvartsman, Stanislav Y</creatorcontrib><creatorcontrib>Brown, Lisa M</creatorcontrib><creatorcontrib>Posfai, Eszter</creatorcontrib><title>Nuclear instance segmentation and tracking for preimplantation mouse embryos</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data. Here, we first report a previously unreported mouse line expressing near-infrared nuclear reporter H2B-miRFP720. We then generate a dataset (termed BlastoSPIM) of 3D images of H2B-miRFP720-expressing embryos with ground truth for nuclear instances. Using BlastoSPIM, we benchmark seven convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method. With our BlastoSPIM-trained Stardist-3D models, we construct a complete pipeline for nuclear instance segmentation and lineage tracking from the eight-cell stage to the end of preimplantation development (&gt;100 nuclei). Finally, we demonstrate the usefulness of BlastoSPIM as pre-train data for related problems, both for a different imaging modality and for different model systems.</description><subject>Animals</subject><subject>Blastocyst - cytology</subject><subject>Cell Nucleus - metabolism</subject><subject>Embryonic Development</subject><subject>Female</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Mice</subject><subject>Neural Networks, Computer</subject><subject>Techniques and Resources</subject><subject>Time-Lapse Imaging - methods</subject><issn>0950-1991</issn><issn>1477-9129</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1LxDAQhoMo7rp68QdIjyJUk0yTtCeRxS9Y9KLnkKbTtdovk3Zh_72R_UBPc5iHd955CDln9JrxhN8UuLrmlKdMHZApS5SKM8azQzKlmaAxyzI2ISfef1JKQSp1TCaQgQKQckoWL6Ot0bioav1gWouRx2WD7WCGqmsj0xbR4Iz9qtplVHYu6h1WTV-bHdB0o8cIm9ytO39KjkpTezzbzhl5f7h_mz_Fi9fH5_ndIrYc-BALW0hpJQ9teJEbhrmAFGVmi8QkmFDDQagUKAhmyyQVxgBkXFLK8zxnZQ4zcrvJ7ce8wcKGus7UundVY9xad6bS_zdt9aGX3UozJlQCkoWEy22C675H9INuKm-xDo9h-EgDY6BEwhUP6NUGta7z3mG5v8Oo_vWvg3-98R_gi7_N9uhOOPwA3zGCkA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Nunley, Hayden</creator><creator>Shao, Binglun</creator><creator>Denberg, David</creator><creator>Grover, Prateek</creator><creator>Singh, Jaspreet</creator><creator>Avdeeva, Maria</creator><creator>Joyce, Bradley</creator><creator>Kim-Yip, Rebecca</creator><creator>Kohrman, Abraham</creator><creator>Biswas, Abhishek</creator><creator>Watters, Aaron</creator><creator>Gal, Zsombor</creator><creator>Kickuth, Alison</creator><creator>Chalifoux, Madeleine</creator><creator>Shvartsman, Stanislav Y</creator><creator>Brown, Lisa M</creator><creator>Posfai, Eszter</creator><general>The Company of Biologists Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6366-2269</orcidid><orcidid>https://orcid.org/0000-0002-8074-2543</orcidid><orcidid>https://orcid.org/0000-0001-6464-804X</orcidid><orcidid>https://orcid.org/0000-0002-3061-7971</orcidid><orcidid>https://orcid.org/0009-0007-3223-0299</orcidid><orcidid>https://orcid.org/0009-0003-1981-5162</orcidid><orcidid>https://orcid.org/0000-0001-7798-0746</orcidid><orcidid>https://orcid.org/0000-0002-9152-9334</orcidid><orcidid>https://orcid.org/0000-0002-7937-0201</orcidid><orcidid>https://orcid.org/0000-0003-0495-7080</orcidid><orcidid>https://orcid.org/0000-0002-4634-9422</orcidid><orcidid>https://orcid.org/0000-0002-3726-1090</orcidid><orcidid>https://orcid.org/0000-0002-8571-7902</orcidid><orcidid>https://orcid.org/0000-0002-9464-3255</orcidid><orcidid>https://orcid.org/0009-0004-7616-7090</orcidid><orcidid>https://orcid.org/0000-0002-4871-6652</orcidid><orcidid>https://orcid.org/0000-0002-4458-6715</orcidid></search><sort><creationdate>20241101</creationdate><title>Nuclear instance segmentation and tracking for preimplantation mouse embryos</title><author>Nunley, Hayden ; Shao, Binglun ; Denberg, David ; Grover, Prateek ; Singh, Jaspreet ; Avdeeva, Maria ; Joyce, Bradley ; Kim-Yip, Rebecca ; Kohrman, Abraham ; Biswas, Abhishek ; Watters, Aaron ; Gal, Zsombor ; Kickuth, Alison ; Chalifoux, Madeleine ; Shvartsman, Stanislav Y ; Brown, Lisa M ; Posfai, Eszter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-5cd66c620362dba1eb538e69cd4a4e40a2357830351cf485aa33926002bbb1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Blastocyst - cytology</topic><topic>Cell Nucleus - metabolism</topic><topic>Embryonic Development</topic><topic>Female</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Mice</topic><topic>Neural Networks, Computer</topic><topic>Techniques and Resources</topic><topic>Time-Lapse Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nunley, Hayden</creatorcontrib><creatorcontrib>Shao, Binglun</creatorcontrib><creatorcontrib>Denberg, David</creatorcontrib><creatorcontrib>Grover, Prateek</creatorcontrib><creatorcontrib>Singh, Jaspreet</creatorcontrib><creatorcontrib>Avdeeva, Maria</creatorcontrib><creatorcontrib>Joyce, Bradley</creatorcontrib><creatorcontrib>Kim-Yip, Rebecca</creatorcontrib><creatorcontrib>Kohrman, Abraham</creatorcontrib><creatorcontrib>Biswas, Abhishek</creatorcontrib><creatorcontrib>Watters, Aaron</creatorcontrib><creatorcontrib>Gal, Zsombor</creatorcontrib><creatorcontrib>Kickuth, Alison</creatorcontrib><creatorcontrib>Chalifoux, Madeleine</creatorcontrib><creatorcontrib>Shvartsman, Stanislav Y</creatorcontrib><creatorcontrib>Brown, Lisa M</creatorcontrib><creatorcontrib>Posfai, Eszter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nunley, Hayden</au><au>Shao, Binglun</au><au>Denberg, David</au><au>Grover, Prateek</au><au>Singh, Jaspreet</au><au>Avdeeva, Maria</au><au>Joyce, Bradley</au><au>Kim-Yip, Rebecca</au><au>Kohrman, Abraham</au><au>Biswas, Abhishek</au><au>Watters, Aaron</au><au>Gal, Zsombor</au><au>Kickuth, Alison</au><au>Chalifoux, Madeleine</au><au>Shvartsman, Stanislav Y</au><au>Brown, Lisa M</au><au>Posfai, Eszter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear instance segmentation and tracking for preimplantation mouse embryos</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>151</volume><issue>21</issue><issn>0950-1991</issn><issn>1477-9129</issn><eissn>1477-9129</eissn><abstract>For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data. Here, we first report a previously unreported mouse line expressing near-infrared nuclear reporter H2B-miRFP720. We then generate a dataset (termed BlastoSPIM) of 3D images of H2B-miRFP720-expressing embryos with ground truth for nuclear instances. Using BlastoSPIM, we benchmark seven convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method. With our BlastoSPIM-trained Stardist-3D models, we construct a complete pipeline for nuclear instance segmentation and lineage tracking from the eight-cell stage to the end of preimplantation development (&gt;100 nuclei). Finally, we demonstrate the usefulness of BlastoSPIM as pre-train data for related problems, both for a different imaging modality and for different model systems.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>39373366</pmid><doi>10.1242/dev.202817</doi><orcidid>https://orcid.org/0000-0002-6366-2269</orcidid><orcidid>https://orcid.org/0000-0002-8074-2543</orcidid><orcidid>https://orcid.org/0000-0001-6464-804X</orcidid><orcidid>https://orcid.org/0000-0002-3061-7971</orcidid><orcidid>https://orcid.org/0009-0007-3223-0299</orcidid><orcidid>https://orcid.org/0009-0003-1981-5162</orcidid><orcidid>https://orcid.org/0000-0001-7798-0746</orcidid><orcidid>https://orcid.org/0000-0002-9152-9334</orcidid><orcidid>https://orcid.org/0000-0002-7937-0201</orcidid><orcidid>https://orcid.org/0000-0003-0495-7080</orcidid><orcidid>https://orcid.org/0000-0002-4634-9422</orcidid><orcidid>https://orcid.org/0000-0002-3726-1090</orcidid><orcidid>https://orcid.org/0000-0002-8571-7902</orcidid><orcidid>https://orcid.org/0000-0002-9464-3255</orcidid><orcidid>https://orcid.org/0009-0004-7616-7090</orcidid><orcidid>https://orcid.org/0000-0002-4871-6652</orcidid><orcidid>https://orcid.org/0000-0002-4458-6715</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-1991
ispartof Development (Cambridge), 2024-11, Vol.151 (21)
issn 0950-1991
1477-9129
1477-9129
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11574361
source MEDLINE; Company of Biologists
subjects Animals
Blastocyst - cytology
Cell Nucleus - metabolism
Embryonic Development
Female
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Mice
Neural Networks, Computer
Techniques and Resources
Time-Lapse Imaging - methods
title Nuclear instance segmentation and tracking for preimplantation mouse embryos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20instance%20segmentation%20and%20tracking%20for%20preimplantation%20mouse%20embryos&rft.jtitle=Development%20(Cambridge)&rft.au=Nunley,%20Hayden&rft.date=2024-11-01&rft.volume=151&rft.issue=21&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.202817&rft_dat=%3Cproquest_pubme%3E3113754272%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113754272&rft_id=info:pmid/39373366&rfr_iscdi=true