Tracking the topology of neural manifolds across populations

Neural manifolds summarize the intrinsic structure of the information encoded by a population of neurons. Advances in experimental techniques have made simultaneous recordings from multiple brain regions increasingly commonplace, raising the possibility of studying how these manifolds relate across...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-11, Vol.121 (46), p.1
Hauptverfasser: Yoon, Iris H. R., Henselman-Petrusek, Gregory, Yu, Yiyi, Ghrist, Robert, Smith, Spencer LaVere, Giusti, Chad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neural manifolds summarize the intrinsic structure of the information encoded by a population of neurons. Advances in experimental techniques have made simultaneous recordings from multiple brain regions increasingly commonplace, raising the possibility of studying how these manifolds relate across populations. However, when the manifolds are nonlinear and possibly code for multiple unknown variables, it is challenging to extract robust and falsifiable information about their relationships. We introduce a framework, called the method of analogous cycles, for matching topological features of neural manifolds using only observed dissimilarity matrices within and between neural populations. We demonstrate via analysis of simulations and in vivo experimental data that this method can be used to correctly identify multiple shared circular coordinate systems across both stimuli and inferred neural manifolds. Conversely, the method rejects matching features that are not intrinsic to one of the systems. Further, as this method is deterministic and does not rely on dimensionality reduction or optimization methods, it is amenable to direct mathematical investigation and interpretation in terms of the underlying neural activity. We thus propose the method of analogous cycles as a suitable foundation for a theory of cross-population analysis via neural manifolds.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.2407997121