Machine Learning-Based X-Ray Projection Interpolation for Improved 4D-CBCT Reconstruction

Goal: Respiration-correlated cone-beam computed tomography (4D-CBCT) is an X-ray-based imaging modality that uses reconstruction algorithms to produce time-varying volumetric images of moving anatomy over a cycle of respiratory motion. The quality of the produced images is affected by the number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of engineering in medicine and biology 2025-01, Vol.6, p.61-67
Hauptverfasser: Ramesh, Jayroop, Sankalpa, Donthi, Mitra, Rohan, Dhou, Salam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 61
container_title IEEE open journal of engineering in medicine and biology
container_volume 6
creator Ramesh, Jayroop
Sankalpa, Donthi
Mitra, Rohan
Dhou, Salam
description Goal: Respiration-correlated cone-beam computed tomography (4D-CBCT) is an X-ray-based imaging modality that uses reconstruction algorithms to produce time-varying volumetric images of moving anatomy over a cycle of respiratory motion. The quality of the produced images is affected by the number of CBCT projections available for reconstruction. Interpolation techniques have been used to generate intermediary projections to be used, along with the original projections, for reconstruction. Transfer learning is a powerful approach that harnesses the ability to reuse pre-trained models in solving new problems. Methods: Several state-of-the-art pre-trained deep learning models, used for video frame interpolation, are utilized in this work to generate intermediary projections. Moreover, a novel regression predictive modeling approach is also proposed to achieve the same objective. Digital phantom and clinical datasets are used to evaluate the performance of the models. Results: The results show that the Real-Time Intermediate Flow Estimation (RIFE) algorithm outperforms the others in terms of the Structural Similarity Index Method (SSIM): 0.986 \pm 0.010, Peak Signal to Noise Ratio (PSNR): 44.13 \pm 2.76, and Mean Square Error (MSE): 18.86 \pm 206.90 across all datasets. Moreover, the interpolated projections were used along with the original ones to reconstruct a 4D-CBCT image that was compared to that reconstructed from the original projections only. Conclusions: The reconstructed image using the proposed approach was found to minimize the streaking artifacts, thereby enhancing the image quality. This work demonstrates the advantage of using general-purpose transfer learning algorithms in 4D-CBCT image enhancement.
doi_str_mv 10.1109/OJEMB.2024.3459622
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11573399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10678916</ieee_id><doaj_id>oai_doaj_org_article_ddad1394bddd45e483b6c9ae53df6eea</doaj_id><sourcerecordid>3127777751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-39588c79f50b015f8c92ff8340f9247a394a7cc713d471ce6db3650774a0ad583</originalsourceid><addsrcrecordid>eNpdkltrFDEUgAdRbKn9AyIy4Isvs-aeyZO4a1tXtlRKBX0KmeTMdpbZZE1mCv33Zi-WrXnJ7Tsf5ySnKN5iNMEYqU833y-upxOCCJtQxpUg5EVxSgRjFSZSvDxanxTnKa0QQoRjjEn9ujihigvGOT0tfl8be995KBdgou_8spqaBK78Vd2ax_JHDCuwQxd8OfcDxE3ozW7XhljO15sYHjLLvlaz6eyuvAUbfBriuIt4U7xqTZ_g_DCfFT8vL-5m36rFzdV89mVRWcr5UOVU6tpK1XLUIMzb2irStjVlqFWESUMVM9JaialjElsQrqGCIymZQcbxmp4V873XBbPSm9itTXzUwXR6dxDiUps4dLYH7ZxxOAsb5xzjwGraCKsMcOpaAWCy6_PetRmbNTgLfoimfyZ9fuO7e70MDxpjLilVKhs-Hgwx_BkhDXrdJQt9bzyEMWmKKapJrgxn9MN_6CqM0ee3yhSR28G3FNlTNoaUIrRP2WCkt52gd52gt52gD52Qg94f1_EU8u_fM_BuD3QAcGQUslZY0L_79rdB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127777751</pqid></control><display><type>article</type><title>Machine Learning-Based X-Ray Projection Interpolation for Improved 4D-CBCT Reconstruction</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ramesh, Jayroop ; Sankalpa, Donthi ; Mitra, Rohan ; Dhou, Salam</creator><creatorcontrib>Ramesh, Jayroop ; Sankalpa, Donthi ; Mitra, Rohan ; Dhou, Salam</creatorcontrib><description><![CDATA[Goal: Respiration-correlated cone-beam computed tomography (4D-CBCT) is an X-ray-based imaging modality that uses reconstruction algorithms to produce time-varying volumetric images of moving anatomy over a cycle of respiratory motion. The quality of the produced images is affected by the number of CBCT projections available for reconstruction. Interpolation techniques have been used to generate intermediary projections to be used, along with the original projections, for reconstruction. Transfer learning is a powerful approach that harnesses the ability to reuse pre-trained models in solving new problems. Methods: Several state-of-the-art pre-trained deep learning models, used for video frame interpolation, are utilized in this work to generate intermediary projections. Moreover, a novel regression predictive modeling approach is also proposed to achieve the same objective. Digital phantom and clinical datasets are used to evaluate the performance of the models. Results: The results show that the Real-Time Intermediate Flow Estimation (RIFE) algorithm outperforms the others in terms of the Structural Similarity Index Method (SSIM): 0.986 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.010, Peak Signal to Noise Ratio (PSNR): 44.13 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2.76, and Mean Square Error (MSE): 18.86 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 206.90 across all datasets. Moreover, the interpolated projections were used along with the original ones to reconstruct a 4D-CBCT image that was compared to that reconstructed from the original projections only. Conclusions: The reconstructed image using the proposed approach was found to minimize the streaking artifacts, thereby enhancing the image quality. This work demonstrates the advantage of using general-purpose transfer learning algorithms in 4D-CBCT image enhancement.]]></description><identifier>ISSN: 2644-1276</identifier><identifier>EISSN: 2644-1276</identifier><identifier>DOI: 10.1109/OJEMB.2024.3459622</identifier><identifier>PMID: 39564553</identifier><identifier>CODEN: IOJEA7</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>4D-CBCT reconstruction ; Algorithms ; Computed tomography ; Datasets ; Deep learning ; Harnesses ; Image enhancement ; Image quality ; Image reconstruction ; intermediate projection interpolation ; Interpolation ; Linear regression ; Machine learning ; multi-output regression ; Phantoms ; Prediction models ; Regression analysis ; Signal to noise ratio ; Training ; Transfer learning ; X ray imagery ; X-ray imaging</subject><ispartof>IEEE open journal of engineering in medicine and biology, 2025-01, Vol.6, p.61-67</ispartof><rights>2024 The Authors.</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><rights>2024 The Authors 2024 Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-39588c79f50b015f8c92ff8340f9247a394a7cc713d471ce6db3650774a0ad583</cites><orcidid>0000-0002-7093-5149 ; 0000-0002-8007-5437 ; 0000-0002-8143-6417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573399/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10678916$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27633,27924,27925,53791,53793,54933</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39564553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramesh, Jayroop</creatorcontrib><creatorcontrib>Sankalpa, Donthi</creatorcontrib><creatorcontrib>Mitra, Rohan</creatorcontrib><creatorcontrib>Dhou, Salam</creatorcontrib><title>Machine Learning-Based X-Ray Projection Interpolation for Improved 4D-CBCT Reconstruction</title><title>IEEE open journal of engineering in medicine and biology</title><addtitle>OJEMB</addtitle><addtitle>IEEE Open J Eng Med Biol</addtitle><description><![CDATA[Goal: Respiration-correlated cone-beam computed tomography (4D-CBCT) is an X-ray-based imaging modality that uses reconstruction algorithms to produce time-varying volumetric images of moving anatomy over a cycle of respiratory motion. The quality of the produced images is affected by the number of CBCT projections available for reconstruction. Interpolation techniques have been used to generate intermediary projections to be used, along with the original projections, for reconstruction. Transfer learning is a powerful approach that harnesses the ability to reuse pre-trained models in solving new problems. Methods: Several state-of-the-art pre-trained deep learning models, used for video frame interpolation, are utilized in this work to generate intermediary projections. Moreover, a novel regression predictive modeling approach is also proposed to achieve the same objective. Digital phantom and clinical datasets are used to evaluate the performance of the models. Results: The results show that the Real-Time Intermediate Flow Estimation (RIFE) algorithm outperforms the others in terms of the Structural Similarity Index Method (SSIM): 0.986 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.010, Peak Signal to Noise Ratio (PSNR): 44.13 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2.76, and Mean Square Error (MSE): 18.86 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 206.90 across all datasets. Moreover, the interpolated projections were used along with the original ones to reconstruct a 4D-CBCT image that was compared to that reconstructed from the original projections only. Conclusions: The reconstructed image using the proposed approach was found to minimize the streaking artifacts, thereby enhancing the image quality. This work demonstrates the advantage of using general-purpose transfer learning algorithms in 4D-CBCT image enhancement.]]></description><subject>4D-CBCT reconstruction</subject><subject>Algorithms</subject><subject>Computed tomography</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Harnesses</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>intermediate projection interpolation</subject><subject>Interpolation</subject><subject>Linear regression</subject><subject>Machine learning</subject><subject>multi-output regression</subject><subject>Phantoms</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Signal to noise ratio</subject><subject>Training</subject><subject>Transfer learning</subject><subject>X ray imagery</subject><subject>X-ray imaging</subject><issn>2644-1276</issn><issn>2644-1276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkltrFDEUgAdRbKn9AyIy4Isvs-aeyZO4a1tXtlRKBX0KmeTMdpbZZE1mCv33Zi-WrXnJ7Tsf5ySnKN5iNMEYqU833y-upxOCCJtQxpUg5EVxSgRjFSZSvDxanxTnKa0QQoRjjEn9ujihigvGOT0tfl8be995KBdgou_8spqaBK78Vd2ax_JHDCuwQxd8OfcDxE3ozW7XhljO15sYHjLLvlaz6eyuvAUbfBriuIt4U7xqTZ_g_DCfFT8vL-5m36rFzdV89mVRWcr5UOVU6tpK1XLUIMzb2irStjVlqFWESUMVM9JaialjElsQrqGCIymZQcbxmp4V873XBbPSm9itTXzUwXR6dxDiUps4dLYH7ZxxOAsb5xzjwGraCKsMcOpaAWCy6_PetRmbNTgLfoimfyZ9fuO7e70MDxpjLilVKhs-Hgwx_BkhDXrdJQt9bzyEMWmKKapJrgxn9MN_6CqM0ee3yhSR28G3FNlTNoaUIrRP2WCkt52gd52gt52gD52Qg94f1_EU8u_fM_BuD3QAcGQUslZY0L_79rdB</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Ramesh, Jayroop</creator><creator>Sankalpa, Donthi</creator><creator>Mitra, Rohan</creator><creator>Dhou, Salam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7093-5149</orcidid><orcidid>https://orcid.org/0000-0002-8007-5437</orcidid><orcidid>https://orcid.org/0000-0002-8143-6417</orcidid></search><sort><creationdate>20250101</creationdate><title>Machine Learning-Based X-Ray Projection Interpolation for Improved 4D-CBCT Reconstruction</title><author>Ramesh, Jayroop ; Sankalpa, Donthi ; Mitra, Rohan ; Dhou, Salam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-39588c79f50b015f8c92ff8340f9247a394a7cc713d471ce6db3650774a0ad583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>4D-CBCT reconstruction</topic><topic>Algorithms</topic><topic>Computed tomography</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Harnesses</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>intermediate projection interpolation</topic><topic>Interpolation</topic><topic>Linear regression</topic><topic>Machine learning</topic><topic>multi-output regression</topic><topic>Phantoms</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Signal to noise ratio</topic><topic>Training</topic><topic>Transfer learning</topic><topic>X ray imagery</topic><topic>X-ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramesh, Jayroop</creatorcontrib><creatorcontrib>Sankalpa, Donthi</creatorcontrib><creatorcontrib>Mitra, Rohan</creatorcontrib><creatorcontrib>Dhou, Salam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of engineering in medicine and biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramesh, Jayroop</au><au>Sankalpa, Donthi</au><au>Mitra, Rohan</au><au>Dhou, Salam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Based X-Ray Projection Interpolation for Improved 4D-CBCT Reconstruction</atitle><jtitle>IEEE open journal of engineering in medicine and biology</jtitle><stitle>OJEMB</stitle><addtitle>IEEE Open J Eng Med Biol</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>6</volume><spage>61</spage><epage>67</epage><pages>61-67</pages><issn>2644-1276</issn><eissn>2644-1276</eissn><coden>IOJEA7</coden><abstract><![CDATA[Goal: Respiration-correlated cone-beam computed tomography (4D-CBCT) is an X-ray-based imaging modality that uses reconstruction algorithms to produce time-varying volumetric images of moving anatomy over a cycle of respiratory motion. The quality of the produced images is affected by the number of CBCT projections available for reconstruction. Interpolation techniques have been used to generate intermediary projections to be used, along with the original projections, for reconstruction. Transfer learning is a powerful approach that harnesses the ability to reuse pre-trained models in solving new problems. Methods: Several state-of-the-art pre-trained deep learning models, used for video frame interpolation, are utilized in this work to generate intermediary projections. Moreover, a novel regression predictive modeling approach is also proposed to achieve the same objective. Digital phantom and clinical datasets are used to evaluate the performance of the models. Results: The results show that the Real-Time Intermediate Flow Estimation (RIFE) algorithm outperforms the others in terms of the Structural Similarity Index Method (SSIM): 0.986 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.010, Peak Signal to Noise Ratio (PSNR): 44.13 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2.76, and Mean Square Error (MSE): 18.86 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 206.90 across all datasets. Moreover, the interpolated projections were used along with the original ones to reconstruct a 4D-CBCT image that was compared to that reconstructed from the original projections only. Conclusions: The reconstructed image using the proposed approach was found to minimize the streaking artifacts, thereby enhancing the image quality. This work demonstrates the advantage of using general-purpose transfer learning algorithms in 4D-CBCT image enhancement.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>39564553</pmid><doi>10.1109/OJEMB.2024.3459622</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7093-5149</orcidid><orcidid>https://orcid.org/0000-0002-8007-5437</orcidid><orcidid>https://orcid.org/0000-0002-8143-6417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-1276
ispartof IEEE open journal of engineering in medicine and biology, 2025-01, Vol.6, p.61-67
issn 2644-1276
2644-1276
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11573399
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 4D-CBCT reconstruction
Algorithms
Computed tomography
Datasets
Deep learning
Harnesses
Image enhancement
Image quality
Image reconstruction
intermediate projection interpolation
Interpolation
Linear regression
Machine learning
multi-output regression
Phantoms
Prediction models
Regression analysis
Signal to noise ratio
Training
Transfer learning
X ray imagery
X-ray imaging
title Machine Learning-Based X-Ray Projection Interpolation for Improved 4D-CBCT Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Based%20X-Ray%20Projection%20Interpolation%20for%20Improved%204D-CBCT%20Reconstruction&rft.jtitle=IEEE%20open%20journal%20of%20engineering%20in%20medicine%20and%20biology&rft.au=Ramesh,%20Jayroop&rft.date=2025-01-01&rft.volume=6&rft.spage=61&rft.epage=67&rft.pages=61-67&rft.issn=2644-1276&rft.eissn=2644-1276&rft.coden=IOJEA7&rft_id=info:doi/10.1109/OJEMB.2024.3459622&rft_dat=%3Cproquest_pubme%3E3127777751%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127777751&rft_id=info:pmid/39564553&rft_ieee_id=10678916&rft_doaj_id=oai_doaj_org_article_ddad1394bddd45e483b6c9ae53df6eea&rfr_iscdi=true