Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?

At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional & integrative genomics 2024-12, Vol.24 (6), p.216-216, Article 216
Hauptverfasser: Javaid, Arzish, Hameed, Sadaf, Li, Lijie, Zhang, Zhiyong, Zhang, Baohong, -Rahman, Mehboob-ur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue 6
container_start_page 216
container_title Functional & integrative genomics
container_volume 24
creator Javaid, Arzish
Hameed, Sadaf
Li, Lijie
Zhang, Zhiyong
Zhang, Baohong
-Rahman, Mehboob-ur
description At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.
doi_str_mv 10.1007/s10142-024-01485-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11569009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154171157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-bfbe623435d831841f0daa0174faf059c25a8ec5d96f03d0e74a486577ee4d193</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0Eon-_QA9VJC5cUsaxncSnCq2grVSJC0jcLK8zybpy7MVOVu23x7tbFsoBcfJI85s3b_wIuaBwRQGaD4kC5VUJFS9z0Yry8RU5ppy1ZSN5-_pQs-9H5CSlBwAQINlbcsSk4JJyfkxWC-0Lr32Y0Kx8cGF4KrTvigF9GK1JhfU-bPRkg0_FFO0wYCz0EK2Z3TRH7YqIm-DmLbAbTHOatPV66bDocIMurEf00_UZedNrl_D8-T0l3z5_-rq4Le-_3NwtPt6XhnExlct-iXXFOBNdy2jLaQ-d1kAb3usehDSV0C0a0cm6B9YBNlzzthZNg8g7Ktkpud7rrufliJ3Ju7NLtY521PFJBW3Vy463KzWEjaJU1BJgq_D-WSGGHzOmSY02GXROewxzUowKTpuMN_-BVrLKpmqW0Xd_oQ9hjj5_xY4CIWRNM1XtKRNDShH7g3EKahu62oeucuhqF7p6zEOXf558GPmVcgbYHki55XOCv3f_Q_Yn35q68Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129055961</pqid></control><display><type>article</type><title>Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Javaid, Arzish ; Hameed, Sadaf ; Li, Lijie ; Zhang, Zhiyong ; Zhang, Baohong ; -Rahman, Mehboob-ur</creator><creatorcontrib>Javaid, Arzish ; Hameed, Sadaf ; Li, Lijie ; Zhang, Zhiyong ; Zhang, Baohong ; -Rahman, Mehboob-ur</creatorcontrib><description>At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.</description><identifier>ISSN: 1438-793X</identifier><identifier>ISSN: 1438-7948</identifier><identifier>EISSN: 1438-7948</identifier><identifier>DOI: 10.1007/s10142-024-01485-x</identifier><identifier>PMID: 39549144</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Agriculture - methods ; Agrochemicals ; Animal Genetics and Genomics ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Cell Biology ; CRISPR ; CRISPR-Cas Systems ; Crop production ; Crops, Agricultural - genetics ; diagnostic techniques ; domain ; Environmental impact ; Food contamination ; Food plants ; Food quality ; food safety ; Food security ; gene editing ; Gene Editing - methods ; Genetic engineering ; genome ; genomics ; Genomics - methods ; Innovations ; issues and policy ; Life Sciences ; Microbial Genetics and Genomics ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Nanotechnology - methods ; nutrient content ; Nutrient uptake ; Plant breeding ; Plant Genetics and Genomics ; plant health ; Plant protection ; precision agriculture ; Resource utilization ; Review ; sensors (equipment) ; soil quality ; Sustainable Development</subject><ispartof>Functional &amp; integrative genomics, 2024-12, Vol.24 (6), p.216-216, Article 216</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c345t-bfbe623435d831841f0daa0174faf059c25a8ec5d96f03d0e74a486577ee4d193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10142-024-01485-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10142-024-01485-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39549144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Javaid, Arzish</creatorcontrib><creatorcontrib>Hameed, Sadaf</creatorcontrib><creatorcontrib>Li, Lijie</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Baohong</creatorcontrib><creatorcontrib>-Rahman, Mehboob-ur</creatorcontrib><title>Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?</title><title>Functional &amp; integrative genomics</title><addtitle>Funct Integr Genomics</addtitle><addtitle>Funct Integr Genomics</addtitle><description>At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.</description><subject>Agriculture</subject><subject>Agriculture - methods</subject><subject>Agrochemicals</subject><subject>Animal Genetics and Genomics</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Crop production</subject><subject>Crops, Agricultural - genetics</subject><subject>diagnostic techniques</subject><subject>domain</subject><subject>Environmental impact</subject><subject>Food contamination</subject><subject>Food plants</subject><subject>Food quality</subject><subject>food safety</subject><subject>Food security</subject><subject>gene editing</subject><subject>Gene Editing - methods</subject><subject>Genetic engineering</subject><subject>genome</subject><subject>genomics</subject><subject>Genomics - methods</subject><subject>Innovations</subject><subject>issues and policy</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>nutrient content</subject><subject>Nutrient uptake</subject><subject>Plant breeding</subject><subject>Plant Genetics and Genomics</subject><subject>plant health</subject><subject>Plant protection</subject><subject>precision agriculture</subject><subject>Resource utilization</subject><subject>Review</subject><subject>sensors (equipment)</subject><subject>soil quality</subject><subject>Sustainable Development</subject><issn>1438-793X</issn><issn>1438-7948</issn><issn>1438-7948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxS0Eon-_QA9VJC5cUsaxncSnCq2grVSJC0jcLK8zybpy7MVOVu23x7tbFsoBcfJI85s3b_wIuaBwRQGaD4kC5VUJFS9z0Yry8RU5ppy1ZSN5-_pQs-9H5CSlBwAQINlbcsSk4JJyfkxWC-0Lr32Y0Kx8cGF4KrTvigF9GK1JhfU-bPRkg0_FFO0wYCz0EK2Z3TRH7YqIm-DmLbAbTHOatPV66bDocIMurEf00_UZedNrl_D8-T0l3z5_-rq4Le-_3NwtPt6XhnExlct-iXXFOBNdy2jLaQ-d1kAb3usehDSV0C0a0cm6B9YBNlzzthZNg8g7Ktkpud7rrufliJ3Ju7NLtY521PFJBW3Vy463KzWEjaJU1BJgq_D-WSGGHzOmSY02GXROewxzUowKTpuMN_-BVrLKpmqW0Xd_oQ9hjj5_xY4CIWRNM1XtKRNDShH7g3EKahu62oeucuhqF7p6zEOXf558GPmVcgbYHki55XOCv3f_Q_Yn35q68Q</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Javaid, Arzish</creator><creator>Hameed, Sadaf</creator><creator>Li, Lijie</creator><creator>Zhang, Zhiyong</creator><creator>Zhang, Baohong</creator><creator>-Rahman, Mehboob-ur</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20241201</creationdate><title>Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?</title><author>Javaid, Arzish ; Hameed, Sadaf ; Li, Lijie ; Zhang, Zhiyong ; Zhang, Baohong ; -Rahman, Mehboob-ur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-bfbe623435d831841f0daa0174faf059c25a8ec5d96f03d0e74a486577ee4d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Agriculture - methods</topic><topic>Agrochemicals</topic><topic>Animal Genetics and Genomics</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Crop production</topic><topic>Crops, Agricultural - genetics</topic><topic>diagnostic techniques</topic><topic>domain</topic><topic>Environmental impact</topic><topic>Food contamination</topic><topic>Food plants</topic><topic>Food quality</topic><topic>food safety</topic><topic>Food security</topic><topic>gene editing</topic><topic>Gene Editing - methods</topic><topic>Genetic engineering</topic><topic>genome</topic><topic>genomics</topic><topic>Genomics - methods</topic><topic>Innovations</topic><topic>issues and policy</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>nutrient content</topic><topic>Nutrient uptake</topic><topic>Plant breeding</topic><topic>Plant Genetics and Genomics</topic><topic>plant health</topic><topic>Plant protection</topic><topic>precision agriculture</topic><topic>Resource utilization</topic><topic>Review</topic><topic>sensors (equipment)</topic><topic>soil quality</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javaid, Arzish</creatorcontrib><creatorcontrib>Hameed, Sadaf</creatorcontrib><creatorcontrib>Li, Lijie</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Baohong</creatorcontrib><creatorcontrib>-Rahman, Mehboob-ur</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Functional &amp; integrative genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javaid, Arzish</au><au>Hameed, Sadaf</au><au>Li, Lijie</au><au>Zhang, Zhiyong</au><au>Zhang, Baohong</au><au>-Rahman, Mehboob-ur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?</atitle><jtitle>Functional &amp; integrative genomics</jtitle><stitle>Funct Integr Genomics</stitle><addtitle>Funct Integr Genomics</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>24</volume><issue>6</issue><spage>216</spage><epage>216</epage><pages>216-216</pages><artnum>216</artnum><issn>1438-793X</issn><issn>1438-7948</issn><eissn>1438-7948</eissn><abstract>At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39549144</pmid><doi>10.1007/s10142-024-01485-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-793X
ispartof Functional & integrative genomics, 2024-12, Vol.24 (6), p.216-216, Article 216
issn 1438-793X
1438-7948
1438-7948
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11569009
source MEDLINE; SpringerLink Journals
subjects Agriculture
Agriculture - methods
Agrochemicals
Animal Genetics and Genomics
Biochemistry
Bioinformatics
Biomedical and Life Sciences
Cell Biology
CRISPR
CRISPR-Cas Systems
Crop production
Crops, Agricultural - genetics
diagnostic techniques
domain
Environmental impact
Food contamination
Food plants
Food quality
food safety
Food security
gene editing
Gene Editing - methods
Genetic engineering
genome
genomics
Genomics - methods
Innovations
issues and policy
Life Sciences
Microbial Genetics and Genomics
Nanomaterials
Nanoparticles
Nanotechnology
Nanotechnology - methods
nutrient content
Nutrient uptake
Plant breeding
Plant Genetics and Genomics
plant health
Plant protection
precision agriculture
Resource utilization
Review
sensors (equipment)
soil quality
Sustainable Development
title Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20nanotechnology%20and%20genomics%20innovations%20trigger%20agricultural%20revolution%20and%20sustainable%20development?&rft.jtitle=Functional%20&%20integrative%20genomics&rft.au=Javaid,%20Arzish&rft.date=2024-12-01&rft.volume=24&rft.issue=6&rft.spage=216&rft.epage=216&rft.pages=216-216&rft.artnum=216&rft.issn=1438-793X&rft.eissn=1438-7948&rft_id=info:doi/10.1007/s10142-024-01485-x&rft_dat=%3Cproquest_pubme%3E3154171157%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129055961&rft_id=info:pmid/39549144&rfr_iscdi=true