Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?
At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle th...
Gespeichert in:
Veröffentlicht in: | Functional & integrative genomics 2024-12, Vol.24 (6), p.216-216, Article 216 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 216 |
---|---|
container_issue | 6 |
container_start_page | 216 |
container_title | Functional & integrative genomics |
container_volume | 24 |
creator | Javaid, Arzish Hameed, Sadaf Li, Lijie Zhang, Zhiyong Zhang, Baohong -Rahman, Mehboob-ur |
description | At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering. |
doi_str_mv | 10.1007/s10142-024-01485-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11569009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154171157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-bfbe623435d831841f0daa0174faf059c25a8ec5d96f03d0e74a486577ee4d193</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0Eon-_QA9VJC5cUsaxncSnCq2grVSJC0jcLK8zybpy7MVOVu23x7tbFsoBcfJI85s3b_wIuaBwRQGaD4kC5VUJFS9z0Yry8RU5ppy1ZSN5-_pQs-9H5CSlBwAQINlbcsSk4JJyfkxWC-0Lr32Y0Kx8cGF4KrTvigF9GK1JhfU-bPRkg0_FFO0wYCz0EK2Z3TRH7YqIm-DmLbAbTHOatPV66bDocIMurEf00_UZedNrl_D8-T0l3z5_-rq4Le-_3NwtPt6XhnExlct-iXXFOBNdy2jLaQ-d1kAb3usehDSV0C0a0cm6B9YBNlzzthZNg8g7Ktkpud7rrufliJ3Ju7NLtY521PFJBW3Vy463KzWEjaJU1BJgq_D-WSGGHzOmSY02GXROewxzUowKTpuMN_-BVrLKpmqW0Xd_oQ9hjj5_xY4CIWRNM1XtKRNDShH7g3EKahu62oeucuhqF7p6zEOXf558GPmVcgbYHki55XOCv3f_Q_Yn35q68Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129055961</pqid></control><display><type>article</type><title>Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Javaid, Arzish ; Hameed, Sadaf ; Li, Lijie ; Zhang, Zhiyong ; Zhang, Baohong ; -Rahman, Mehboob-ur</creator><creatorcontrib>Javaid, Arzish ; Hameed, Sadaf ; Li, Lijie ; Zhang, Zhiyong ; Zhang, Baohong ; -Rahman, Mehboob-ur</creatorcontrib><description>At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.</description><identifier>ISSN: 1438-793X</identifier><identifier>ISSN: 1438-7948</identifier><identifier>EISSN: 1438-7948</identifier><identifier>DOI: 10.1007/s10142-024-01485-x</identifier><identifier>PMID: 39549144</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Agriculture - methods ; Agrochemicals ; Animal Genetics and Genomics ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Cell Biology ; CRISPR ; CRISPR-Cas Systems ; Crop production ; Crops, Agricultural - genetics ; diagnostic techniques ; domain ; Environmental impact ; Food contamination ; Food plants ; Food quality ; food safety ; Food security ; gene editing ; Gene Editing - methods ; Genetic engineering ; genome ; genomics ; Genomics - methods ; Innovations ; issues and policy ; Life Sciences ; Microbial Genetics and Genomics ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Nanotechnology - methods ; nutrient content ; Nutrient uptake ; Plant breeding ; Plant Genetics and Genomics ; plant health ; Plant protection ; precision agriculture ; Resource utilization ; Review ; sensors (equipment) ; soil quality ; Sustainable Development</subject><ispartof>Functional & integrative genomics, 2024-12, Vol.24 (6), p.216-216, Article 216</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c345t-bfbe623435d831841f0daa0174faf059c25a8ec5d96f03d0e74a486577ee4d193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10142-024-01485-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10142-024-01485-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39549144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Javaid, Arzish</creatorcontrib><creatorcontrib>Hameed, Sadaf</creatorcontrib><creatorcontrib>Li, Lijie</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Baohong</creatorcontrib><creatorcontrib>-Rahman, Mehboob-ur</creatorcontrib><title>Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?</title><title>Functional & integrative genomics</title><addtitle>Funct Integr Genomics</addtitle><addtitle>Funct Integr Genomics</addtitle><description>At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.</description><subject>Agriculture</subject><subject>Agriculture - methods</subject><subject>Agrochemicals</subject><subject>Animal Genetics and Genomics</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Crop production</subject><subject>Crops, Agricultural - genetics</subject><subject>diagnostic techniques</subject><subject>domain</subject><subject>Environmental impact</subject><subject>Food contamination</subject><subject>Food plants</subject><subject>Food quality</subject><subject>food safety</subject><subject>Food security</subject><subject>gene editing</subject><subject>Gene Editing - methods</subject><subject>Genetic engineering</subject><subject>genome</subject><subject>genomics</subject><subject>Genomics - methods</subject><subject>Innovations</subject><subject>issues and policy</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>nutrient content</subject><subject>Nutrient uptake</subject><subject>Plant breeding</subject><subject>Plant Genetics and Genomics</subject><subject>plant health</subject><subject>Plant protection</subject><subject>precision agriculture</subject><subject>Resource utilization</subject><subject>Review</subject><subject>sensors (equipment)</subject><subject>soil quality</subject><subject>Sustainable Development</subject><issn>1438-793X</issn><issn>1438-7948</issn><issn>1438-7948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxS0Eon-_QA9VJC5cUsaxncSnCq2grVSJC0jcLK8zybpy7MVOVu23x7tbFsoBcfJI85s3b_wIuaBwRQGaD4kC5VUJFS9z0Yry8RU5ppy1ZSN5-_pQs-9H5CSlBwAQINlbcsSk4JJyfkxWC-0Lr32Y0Kx8cGF4KrTvigF9GK1JhfU-bPRkg0_FFO0wYCz0EK2Z3TRH7YqIm-DmLbAbTHOatPV66bDocIMurEf00_UZedNrl_D8-T0l3z5_-rq4Le-_3NwtPt6XhnExlct-iXXFOBNdy2jLaQ-d1kAb3usehDSV0C0a0cm6B9YBNlzzthZNg8g7Ktkpud7rrufliJ3Ju7NLtY521PFJBW3Vy463KzWEjaJU1BJgq_D-WSGGHzOmSY02GXROewxzUowKTpuMN_-BVrLKpmqW0Xd_oQ9hjj5_xY4CIWRNM1XtKRNDShH7g3EKahu62oeucuhqF7p6zEOXf558GPmVcgbYHki55XOCv3f_Q_Yn35q68Q</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Javaid, Arzish</creator><creator>Hameed, Sadaf</creator><creator>Li, Lijie</creator><creator>Zhang, Zhiyong</creator><creator>Zhang, Baohong</creator><creator>-Rahman, Mehboob-ur</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20241201</creationdate><title>Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?</title><author>Javaid, Arzish ; Hameed, Sadaf ; Li, Lijie ; Zhang, Zhiyong ; Zhang, Baohong ; -Rahman, Mehboob-ur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-bfbe623435d831841f0daa0174faf059c25a8ec5d96f03d0e74a486577ee4d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Agriculture - methods</topic><topic>Agrochemicals</topic><topic>Animal Genetics and Genomics</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Crop production</topic><topic>Crops, Agricultural - genetics</topic><topic>diagnostic techniques</topic><topic>domain</topic><topic>Environmental impact</topic><topic>Food contamination</topic><topic>Food plants</topic><topic>Food quality</topic><topic>food safety</topic><topic>Food security</topic><topic>gene editing</topic><topic>Gene Editing - methods</topic><topic>Genetic engineering</topic><topic>genome</topic><topic>genomics</topic><topic>Genomics - methods</topic><topic>Innovations</topic><topic>issues and policy</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>nutrient content</topic><topic>Nutrient uptake</topic><topic>Plant breeding</topic><topic>Plant Genetics and Genomics</topic><topic>plant health</topic><topic>Plant protection</topic><topic>precision agriculture</topic><topic>Resource utilization</topic><topic>Review</topic><topic>sensors (equipment)</topic><topic>soil quality</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javaid, Arzish</creatorcontrib><creatorcontrib>Hameed, Sadaf</creatorcontrib><creatorcontrib>Li, Lijie</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Baohong</creatorcontrib><creatorcontrib>-Rahman, Mehboob-ur</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Functional & integrative genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javaid, Arzish</au><au>Hameed, Sadaf</au><au>Li, Lijie</au><au>Zhang, Zhiyong</au><au>Zhang, Baohong</au><au>-Rahman, Mehboob-ur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?</atitle><jtitle>Functional & integrative genomics</jtitle><stitle>Funct Integr Genomics</stitle><addtitle>Funct Integr Genomics</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>24</volume><issue>6</issue><spage>216</spage><epage>216</epage><pages>216-216</pages><artnum>216</artnum><issn>1438-793X</issn><issn>1438-7948</issn><eissn>1438-7948</eissn><abstract>At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39549144</pmid><doi>10.1007/s10142-024-01485-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-793X |
ispartof | Functional & integrative genomics, 2024-12, Vol.24 (6), p.216-216, Article 216 |
issn | 1438-793X 1438-7948 1438-7948 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11569009 |
source | MEDLINE; SpringerLink Journals |
subjects | Agriculture Agriculture - methods Agrochemicals Animal Genetics and Genomics Biochemistry Bioinformatics Biomedical and Life Sciences Cell Biology CRISPR CRISPR-Cas Systems Crop production Crops, Agricultural - genetics diagnostic techniques domain Environmental impact Food contamination Food plants Food quality food safety Food security gene editing Gene Editing - methods Genetic engineering genome genomics Genomics - methods Innovations issues and policy Life Sciences Microbial Genetics and Genomics Nanomaterials Nanoparticles Nanotechnology Nanotechnology - methods nutrient content Nutrient uptake Plant breeding Plant Genetics and Genomics plant health Plant protection precision agriculture Resource utilization Review sensors (equipment) soil quality Sustainable Development |
title | Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20nanotechnology%20and%20genomics%20innovations%20trigger%20agricultural%20revolution%20and%20sustainable%20development?&rft.jtitle=Functional%20&%20integrative%20genomics&rft.au=Javaid,%20Arzish&rft.date=2024-12-01&rft.volume=24&rft.issue=6&rft.spage=216&rft.epage=216&rft.pages=216-216&rft.artnum=216&rft.issn=1438-793X&rft.eissn=1438-7948&rft_id=info:doi/10.1007/s10142-024-01485-x&rft_dat=%3Cproquest_pubme%3E3154171157%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129055961&rft_id=info:pmid/39549144&rfr_iscdi=true |