Kitaev interactions through extended superexchange pathways in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=1/2$$\end{document}jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11
Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum s...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-11, Vol.15 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Nature communications |
container_volume | 15 |
creator | Abdeldaim, Aly H. Gretarsson, Hlynur Day, Sarah J. Le, M. Duc Stenning, Gavin B. G. Manuel, Pascal Perry, Robin S. Tsirlin, Alexander A. Nilsen, Gøran J. Clark, Lucy |
description | Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru
3+
octahedra within the honeycomb layers of the inorganic framework solid, RuP
3
SiO
11
. We confirm the requisite
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${j}_{{\mathsf{eff}}}=\frac{1}{2}$$\end{document}
j
eff
=
1
2
state of Ru
3+
in RuP
3
SiO
11
and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model.
Recent theoretical studies indicate that the Kitaev model may be realized in framework materials exhibiting extended superexchange pathways. Here the authors report experimental evidence showing that the material requirements for a Kitaev quantum spin liquid are satisfied in a inorganic framework material. |
doi_str_mv | 10.1038/s41467-024-53900-3 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11568271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_11568271</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_115682713</originalsourceid><addsrcrecordid>eNqlkEFr3DAQhd1CaUKbP9CTDnsLbizL3vUeSg6hoZBDS5JbXIxsj21tLMlo5N01wv89Wkgpmz1mLmK-ee8NmiD4RqPvNGLZFSY0Wa7CKE7ClK2jKGQfg_M4SmhIVzE7Cy4QN5EvtqZZknwOztg6TbIozc4_THfCctgSoSwYXlmhFRLbGT22HYG9BVVDTXAcwMC-6rhqgQzcdjs-oTd5KZC81tUoQdmq54hPNB7sXyeFEpL3M8lHhIFXz7wFxyVKbz6GO44TTvJE2Whl8YR6ZXkCS5yO2WGLweaNfRxaA_DsIYLtQbW2c7muaxQ1SG5aoWYXLteD9YoSfOv-_WxeLNxmLpzLD8nYOGiaeZ5_0Kt4scj9kf4rN3504OR-ZJek0wqmSsuSSN4qsJ7-YQ_iN6Vfg08N7xEuXt8vwfXtz8ebX-EwlhLqymcZ3heD8Wc0U6G5KI4nSnRFq7cFpekyi1eUvT_hBe-t0ws</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kitaev interactions through extended superexchange pathways in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=1/2$$\end{document}jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Abdeldaim, Aly H. ; Gretarsson, Hlynur ; Day, Sarah J. ; Le, M. Duc ; Stenning, Gavin B. G. ; Manuel, Pascal ; Perry, Robin S. ; Tsirlin, Alexander A. ; Nilsen, Gøran J. ; Clark, Lucy</creator><creatorcontrib>Abdeldaim, Aly H. ; Gretarsson, Hlynur ; Day, Sarah J. ; Le, M. Duc ; Stenning, Gavin B. G. ; Manuel, Pascal ; Perry, Robin S. ; Tsirlin, Alexander A. ; Nilsen, Gøran J. ; Clark, Lucy</creatorcontrib><description>Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru
3+
octahedra within the honeycomb layers of the inorganic framework solid, RuP
3
SiO
11
. We confirm the requisite
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${j}_{{\mathsf{eff}}}=\frac{1}{2}$$\end{document}
j
eff
=
1
2
state of Ru
3+
in RuP
3
SiO
11
and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model.
Recent theoretical studies indicate that the Kitaev model may be realized in framework materials exhibiting extended superexchange pathways. Here the authors report experimental evidence showing that the material requirements for a Kitaev quantum spin liquid are satisfied in a inorganic framework material.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-53900-3</identifier><identifier>PMID: 39548058</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><ispartof>Nature communications, 2024-11, Vol.15</ispartof><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568271/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568271/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Abdeldaim, Aly H.</creatorcontrib><creatorcontrib>Gretarsson, Hlynur</creatorcontrib><creatorcontrib>Day, Sarah J.</creatorcontrib><creatorcontrib>Le, M. Duc</creatorcontrib><creatorcontrib>Stenning, Gavin B. G.</creatorcontrib><creatorcontrib>Manuel, Pascal</creatorcontrib><creatorcontrib>Perry, Robin S.</creatorcontrib><creatorcontrib>Tsirlin, Alexander A.</creatorcontrib><creatorcontrib>Nilsen, Gøran J.</creatorcontrib><creatorcontrib>Clark, Lucy</creatorcontrib><title>Kitaev interactions through extended superexchange pathways in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=1/2$$\end{document}jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11</title><title>Nature communications</title><description>Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru
3+
octahedra within the honeycomb layers of the inorganic framework solid, RuP
3
SiO
11
. We confirm the requisite
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${j}_{{\mathsf{eff}}}=\frac{1}{2}$$\end{document}
j
eff
=
1
2
state of Ru
3+
in RuP
3
SiO
11
and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model.
Recent theoretical studies indicate that the Kitaev model may be realized in framework materials exhibiting extended superexchange pathways. Here the authors report experimental evidence showing that the material requirements for a Kitaev quantum spin liquid are satisfied in a inorganic framework material.</description><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqlkEFr3DAQhd1CaUKbP9CTDnsLbizL3vUeSg6hoZBDS5JbXIxsj21tLMlo5N01wv89Wkgpmz1mLmK-ee8NmiD4RqPvNGLZFSY0Wa7CKE7ClK2jKGQfg_M4SmhIVzE7Cy4QN5EvtqZZknwOztg6TbIozc4_THfCctgSoSwYXlmhFRLbGT22HYG9BVVDTXAcwMC-6rhqgQzcdjs-oTd5KZC81tUoQdmq54hPNB7sXyeFEpL3M8lHhIFXz7wFxyVKbz6GO44TTvJE2Whl8YR6ZXkCS5yO2WGLweaNfRxaA_DsIYLtQbW2c7muaxQ1SG5aoWYXLteD9YoSfOv-_WxeLNxmLpzLD8nYOGiaeZ5_0Kt4scj9kf4rN3504OR-ZJek0wqmSsuSSN4qsJ7-YQ_iN6Vfg08N7xEuXt8vwfXtz8ebX-EwlhLqymcZ3heD8Wc0U6G5KI4nSnRFq7cFpekyi1eUvT_hBe-t0ws</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Abdeldaim, Aly H.</creator><creator>Gretarsson, Hlynur</creator><creator>Day, Sarah J.</creator><creator>Le, M. Duc</creator><creator>Stenning, Gavin B. G.</creator><creator>Manuel, Pascal</creator><creator>Perry, Robin S.</creator><creator>Tsirlin, Alexander A.</creator><creator>Nilsen, Gøran J.</creator><creator>Clark, Lucy</creator><general>Nature Publishing Group UK</general><scope>5PM</scope></search><sort><creationdate>20241115</creationdate><title>Kitaev interactions through extended superexchange pathways in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=1/2$$\end{document}jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11</title><author>Abdeldaim, Aly H. ; Gretarsson, Hlynur ; Day, Sarah J. ; Le, M. Duc ; Stenning, Gavin B. G. ; Manuel, Pascal ; Perry, Robin S. ; Tsirlin, Alexander A. ; Nilsen, Gøran J. ; Clark, Lucy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_115682713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdeldaim, Aly H.</creatorcontrib><creatorcontrib>Gretarsson, Hlynur</creatorcontrib><creatorcontrib>Day, Sarah J.</creatorcontrib><creatorcontrib>Le, M. Duc</creatorcontrib><creatorcontrib>Stenning, Gavin B. G.</creatorcontrib><creatorcontrib>Manuel, Pascal</creatorcontrib><creatorcontrib>Perry, Robin S.</creatorcontrib><creatorcontrib>Tsirlin, Alexander A.</creatorcontrib><creatorcontrib>Nilsen, Gøran J.</creatorcontrib><creatorcontrib>Clark, Lucy</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdeldaim, Aly H.</au><au>Gretarsson, Hlynur</au><au>Day, Sarah J.</au><au>Le, M. Duc</au><au>Stenning, Gavin B. G.</au><au>Manuel, Pascal</au><au>Perry, Robin S.</au><au>Tsirlin, Alexander A.</au><au>Nilsen, Gøran J.</au><au>Clark, Lucy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kitaev interactions through extended superexchange pathways in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=1/2$$\end{document}jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11</atitle><jtitle>Nature communications</jtitle><date>2024-11-15</date><risdate>2024</risdate><volume>15</volume><eissn>2041-1723</eissn><abstract>Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru
3+
octahedra within the honeycomb layers of the inorganic framework solid, RuP
3
SiO
11
. We confirm the requisite
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${j}_{{\mathsf{eff}}}=\frac{1}{2}$$\end{document}
j
eff
=
1
2
state of Ru
3+
in RuP
3
SiO
11
and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model.
Recent theoretical studies indicate that the Kitaev model may be realized in framework materials exhibiting extended superexchange pathways. Here the authors report experimental evidence showing that the material requirements for a Kitaev quantum spin liquid are satisfied in a inorganic framework material.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39548058</pmid><doi>10.1038/s41467-024-53900-3</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2041-1723 |
ispartof | Nature communications, 2024-11, Vol.15 |
issn | 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11568271 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection |
title | Kitaev interactions through extended superexchange pathways in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=1/2$$\end{document}jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kitaev%20interactions%20through%20extended%20superexchange%20pathways%20in%20the%20%5Cdocumentclass%5B12pt%5D%7Bminimal%7D%20%5Cusepackage%7Bamsmath%7D%20%5Cusepackage%7Bwasysym%7D%20%5Cusepackage%7Bamsfonts%7D%20%5Cusepackage%7Bamssymb%7D%20%5Cusepackage%7Bamsbsy%7D%20%5Cusepackage%7Bmathrsfs%7D%20%5Cusepackage%7Bupgreek%7D%20%5Csetlength%7B%5Coddsidemargin%7D%7B-69pt%7D%20%5Cbegin%7Bdocument%7D$$%7Bj%7D_%7B%7B%5Cmathsf%7Beff%7D%7D%7D=1/2$$%5Cend%7Bdocument%7Djeff=1/2%20Ru3+%20honeycomb%20magnet%20RuP3SiO11&rft.jtitle=Nature%20communications&rft.au=Abdeldaim,%20Aly%20H.&rft.date=2024-11-15&rft.volume=15&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-53900-3&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_11568271%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39548058&rfr_iscdi=true |