Kitaev interactions through extended superexchange pathways in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=1/2$$\end{document}jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11

Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-11, Vol.15
Hauptverfasser: Abdeldaim, Aly H., Gretarsson, Hlynur, Day, Sarah J., Le, M. Duc, Stenning, Gavin B. G., Manuel, Pascal, Perry, Robin S., Tsirlin, Alexander A., Nilsen, Gøran J., Clark, Lucy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Nature communications
container_volume 15
creator Abdeldaim, Aly H.
Gretarsson, Hlynur
Day, Sarah J.
Le, M. Duc
Stenning, Gavin B. G.
Manuel, Pascal
Perry, Robin S.
Tsirlin, Alexander A.
Nilsen, Gøran J.
Clark, Lucy
description Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru 3+ octahedra within the honeycomb layers of the inorganic framework solid, RuP 3 SiO 11 . We confirm the requisite \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=\frac{1}{2}$$\end{document} j eff = 1 2 state of Ru 3+ in RuP 3 SiO 11 and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model. Recent theoretical studies indicate that the Kitaev model may be realized in framework materials exhibiting extended superexchange pathways. Here the authors report experimental evidence showing that the material requirements for a Kitaev quantum spin liquid are satisfied in a inorganic framework material.
doi_str_mv 10.1038/s41467-024-53900-3
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11568271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_11568271</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_115682713</originalsourceid><addsrcrecordid>eNqlkEFr3DAQhd1CaUKbP9CTDnsLbizL3vUeSg6hoZBDS5JbXIxsj21tLMlo5N01wv89Wkgpmz1mLmK-ee8NmiD4RqPvNGLZFSY0Wa7CKE7ClK2jKGQfg_M4SmhIVzE7Cy4QN5EvtqZZknwOztg6TbIozc4_THfCctgSoSwYXlmhFRLbGT22HYG9BVVDTXAcwMC-6rhqgQzcdjs-oTd5KZC81tUoQdmq54hPNB7sXyeFEpL3M8lHhIFXz7wFxyVKbz6GO44TTvJE2Whl8YR6ZXkCS5yO2WGLweaNfRxaA_DsIYLtQbW2c7muaxQ1SG5aoWYXLteD9YoSfOv-_WxeLNxmLpzLD8nYOGiaeZ5_0Kt4scj9kf4rN3504OR-ZJek0wqmSsuSSN4qsJ7-YQ_iN6Vfg08N7xEuXt8vwfXtz8ebX-EwlhLqymcZ3heD8Wc0U6G5KI4nSnRFq7cFpekyi1eUvT_hBe-t0ws</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kitaev interactions through extended superexchange pathways in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=1/2$$\end{document}jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Abdeldaim, Aly H. ; Gretarsson, Hlynur ; Day, Sarah J. ; Le, M. Duc ; Stenning, Gavin B. G. ; Manuel, Pascal ; Perry, Robin S. ; Tsirlin, Alexander A. ; Nilsen, Gøran J. ; Clark, Lucy</creator><creatorcontrib>Abdeldaim, Aly H. ; Gretarsson, Hlynur ; Day, Sarah J. ; Le, M. Duc ; Stenning, Gavin B. G. ; Manuel, Pascal ; Perry, Robin S. ; Tsirlin, Alexander A. ; Nilsen, Gøran J. ; Clark, Lucy</creatorcontrib><description>Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru 3+ octahedra within the honeycomb layers of the inorganic framework solid, RuP 3 SiO 11 . We confirm the requisite \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=\frac{1}{2}$$\end{document} j eff = 1 2 state of Ru 3+ in RuP 3 SiO 11 and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model. Recent theoretical studies indicate that the Kitaev model may be realized in framework materials exhibiting extended superexchange pathways. Here the authors report experimental evidence showing that the material requirements for a Kitaev quantum spin liquid are satisfied in a inorganic framework material.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-53900-3</identifier><identifier>PMID: 39548058</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><ispartof>Nature communications, 2024-11, Vol.15</ispartof><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568271/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568271/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Abdeldaim, Aly H.</creatorcontrib><creatorcontrib>Gretarsson, Hlynur</creatorcontrib><creatorcontrib>Day, Sarah J.</creatorcontrib><creatorcontrib>Le, M. Duc</creatorcontrib><creatorcontrib>Stenning, Gavin B. G.</creatorcontrib><creatorcontrib>Manuel, Pascal</creatorcontrib><creatorcontrib>Perry, Robin S.</creatorcontrib><creatorcontrib>Tsirlin, Alexander A.</creatorcontrib><creatorcontrib>Nilsen, Gøran J.</creatorcontrib><creatorcontrib>Clark, Lucy</creatorcontrib><title>Kitaev interactions through extended superexchange pathways in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=1/2$$\end{document}jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11</title><title>Nature communications</title><description>Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru 3+ octahedra within the honeycomb layers of the inorganic framework solid, RuP 3 SiO 11 . We confirm the requisite \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=\frac{1}{2}$$\end{document} j eff = 1 2 state of Ru 3+ in RuP 3 SiO 11 and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model. Recent theoretical studies indicate that the Kitaev model may be realized in framework materials exhibiting extended superexchange pathways. Here the authors report experimental evidence showing that the material requirements for a Kitaev quantum spin liquid are satisfied in a inorganic framework material.</description><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqlkEFr3DAQhd1CaUKbP9CTDnsLbizL3vUeSg6hoZBDS5JbXIxsj21tLMlo5N01wv89Wkgpmz1mLmK-ee8NmiD4RqPvNGLZFSY0Wa7CKE7ClK2jKGQfg_M4SmhIVzE7Cy4QN5EvtqZZknwOztg6TbIozc4_THfCctgSoSwYXlmhFRLbGT22HYG9BVVDTXAcwMC-6rhqgQzcdjs-oTd5KZC81tUoQdmq54hPNB7sXyeFEpL3M8lHhIFXz7wFxyVKbz6GO44TTvJE2Whl8YR6ZXkCS5yO2WGLweaNfRxaA_DsIYLtQbW2c7muaxQ1SG5aoWYXLteD9YoSfOv-_WxeLNxmLpzLD8nYOGiaeZ5_0Kt4scj9kf4rN3504OR-ZJek0wqmSsuSSN4qsJ7-YQ_iN6Vfg08N7xEuXt8vwfXtz8ebX-EwlhLqymcZ3heD8Wc0U6G5KI4nSnRFq7cFpekyi1eUvT_hBe-t0ws</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Abdeldaim, Aly H.</creator><creator>Gretarsson, Hlynur</creator><creator>Day, Sarah J.</creator><creator>Le, M. Duc</creator><creator>Stenning, Gavin B. G.</creator><creator>Manuel, Pascal</creator><creator>Perry, Robin S.</creator><creator>Tsirlin, Alexander A.</creator><creator>Nilsen, Gøran J.</creator><creator>Clark, Lucy</creator><general>Nature Publishing Group UK</general><scope>5PM</scope></search><sort><creationdate>20241115</creationdate><title>Kitaev interactions through extended superexchange pathways in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=1/2$$\end{document}jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11</title><author>Abdeldaim, Aly H. ; Gretarsson, Hlynur ; Day, Sarah J. ; Le, M. Duc ; Stenning, Gavin B. G. ; Manuel, Pascal ; Perry, Robin S. ; Tsirlin, Alexander A. ; Nilsen, Gøran J. ; Clark, Lucy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_115682713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdeldaim, Aly H.</creatorcontrib><creatorcontrib>Gretarsson, Hlynur</creatorcontrib><creatorcontrib>Day, Sarah J.</creatorcontrib><creatorcontrib>Le, M. Duc</creatorcontrib><creatorcontrib>Stenning, Gavin B. G.</creatorcontrib><creatorcontrib>Manuel, Pascal</creatorcontrib><creatorcontrib>Perry, Robin S.</creatorcontrib><creatorcontrib>Tsirlin, Alexander A.</creatorcontrib><creatorcontrib>Nilsen, Gøran J.</creatorcontrib><creatorcontrib>Clark, Lucy</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdeldaim, Aly H.</au><au>Gretarsson, Hlynur</au><au>Day, Sarah J.</au><au>Le, M. Duc</au><au>Stenning, Gavin B. G.</au><au>Manuel, Pascal</au><au>Perry, Robin S.</au><au>Tsirlin, Alexander A.</au><au>Nilsen, Gøran J.</au><au>Clark, Lucy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kitaev interactions through extended superexchange pathways in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=1/2$$\end{document}jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11</atitle><jtitle>Nature communications</jtitle><date>2024-11-15</date><risdate>2024</risdate><volume>15</volume><eissn>2041-1723</eissn><abstract>Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru 3+ octahedra within the honeycomb layers of the inorganic framework solid, RuP 3 SiO 11 . We confirm the requisite \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=\frac{1}{2}$$\end{document} j eff = 1 2 state of Ru 3+ in RuP 3 SiO 11 and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model. Recent theoretical studies indicate that the Kitaev model may be realized in framework materials exhibiting extended superexchange pathways. Here the authors report experimental evidence showing that the material requirements for a Kitaev quantum spin liquid are satisfied in a inorganic framework material.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39548058</pmid><doi>10.1038/s41467-024-53900-3</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2041-1723
ispartof Nature communications, 2024-11, Vol.15
issn 2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11568271
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection
title Kitaev interactions through extended superexchange pathways in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j}_{{\mathsf{eff}}}=1/2$$\end{document}jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kitaev%20interactions%20through%20extended%20superexchange%20pathways%20in%20the%20%5Cdocumentclass%5B12pt%5D%7Bminimal%7D%20%5Cusepackage%7Bamsmath%7D%20%5Cusepackage%7Bwasysym%7D%20%5Cusepackage%7Bamsfonts%7D%20%5Cusepackage%7Bamssymb%7D%20%5Cusepackage%7Bamsbsy%7D%20%5Cusepackage%7Bmathrsfs%7D%20%5Cusepackage%7Bupgreek%7D%20%5Csetlength%7B%5Coddsidemargin%7D%7B-69pt%7D%20%5Cbegin%7Bdocument%7D$$%7Bj%7D_%7B%7B%5Cmathsf%7Beff%7D%7D%7D=1/2$$%5Cend%7Bdocument%7Djeff=1/2%20Ru3+%20honeycomb%20magnet%20RuP3SiO11&rft.jtitle=Nature%20communications&rft.au=Abdeldaim,%20Aly%20H.&rft.date=2024-11-15&rft.volume=15&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-53900-3&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_11568271%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39548058&rfr_iscdi=true