Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes

Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial’s surface chemistry is vital for its desired functioning i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-11, Vol.16 (45), p.61714-61724
Hauptverfasser: Singh, Ramesh, Popat, Ketul C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61724
container_issue 45
container_start_page 61714
container_title ACS applied materials & interfaces
container_volume 16
creator Singh, Ramesh
Popat, Ketul C.
description Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial’s surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell–cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization.
doi_str_mv 10.1021/acsami.4c13885
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11565481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122644353</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-b13b38437febd00dc8a3d9b8c15407592681b48bd8cb159cdb68560d244bf74d3</originalsourceid><addsrcrecordid>eNqNkUtr3DAUhU1paR7ttsuiZSl4oqctr8oweTQQmkDStZBkeazBllxJDvR39A9Xg6dDuwh0IXThfvdw7zlF8QHBFYIYXUgd5WhXVCPCOXtVnKKG0pJjhl8fa0pPirMYdxBWBEP2tjghDa055s1p8evK9dJp67Zg7ZJVUicTrBzAQ_CTCcmaCHwHnmySzs4juB2nQboUQeqDn7c92PhnORiXcuF281Ym691-4tEMXbmO0Yxq2Ktfj16XD73ZP3BpJzMl2xqQ4UVbgm_S-TQrE98Vbzo5RPP-8J8X36-vnjZfy7v7m9vN-q6UhNJUKkQU4ZTUnVEthK3mkrSN4hoxCmvW4IojRblquVaINbpVFWcVbLMfqqtpS86LL4vuNKvRtDpfEeQgpmBHGX4KL634t-NsL7b-WSDEKkY5ygqfDgrB_5hNTGK0UZshW2T8HAXJqyCGa4b_A8W4opQwktHVgurgYwymO66EoNinLpbUxSH1PPDx70OO-J-YM_B5AfKg2Pk5uOzrS2q_Aa6Uut8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122644353</pqid></control><display><type>article</type><title>Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Singh, Ramesh ; Popat, Ketul C.</creator><creatorcontrib>Singh, Ramesh ; Popat, Ketul C.</creatorcontrib><description>Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial’s surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell–cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c13885</identifier><identifier>PMID: 39478289</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; antibacterial properties ; bacterial adhesion ; Bacterial Adhesion - drug effects ; biocompatibility ; biocompatible materials ; biofilm ; Biofilms - drug effects ; Biological and Medical Applications of Materials and Interfaces ; dipeptides ; Dipeptides - chemistry ; Dipeptides - pharmacology ; drug delivery systems ; Fluorenes - chemistry ; Fluorenes - pharmacology ; nanotubes ; Nanotubes - chemistry ; Prostheses and Implants ; Staphylococcus aureus - drug effects ; Surface Properties ; titanium ; Titanium - chemistry ; Titanium - pharmacology ; titanium dioxide</subject><ispartof>ACS applied materials &amp; interfaces, 2024-11, Vol.16 (45), p.61714-61724</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a344t-b13b38437febd00dc8a3d9b8c15407592681b48bd8cb159cdb68560d244bf74d3</cites><orcidid>0000-0002-2417-7789 ; 0000-0002-2874-4971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c13885$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c13885$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39478289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Ramesh</creatorcontrib><creatorcontrib>Popat, Ketul C.</creatorcontrib><title>Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial’s surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell–cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization.</description><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibacterial properties</subject><subject>bacterial adhesion</subject><subject>Bacterial Adhesion - drug effects</subject><subject>biocompatibility</subject><subject>biocompatible materials</subject><subject>biofilm</subject><subject>Biofilms - drug effects</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>dipeptides</subject><subject>Dipeptides - chemistry</subject><subject>Dipeptides - pharmacology</subject><subject>drug delivery systems</subject><subject>Fluorenes - chemistry</subject><subject>Fluorenes - pharmacology</subject><subject>nanotubes</subject><subject>Nanotubes - chemistry</subject><subject>Prostheses and Implants</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Surface Properties</subject><subject>titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium - pharmacology</subject><subject>titanium dioxide</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtr3DAUhU1paR7ttsuiZSl4oqctr8oweTQQmkDStZBkeazBllxJDvR39A9Xg6dDuwh0IXThfvdw7zlF8QHBFYIYXUgd5WhXVCPCOXtVnKKG0pJjhl8fa0pPirMYdxBWBEP2tjghDa055s1p8evK9dJp67Zg7ZJVUicTrBzAQ_CTCcmaCHwHnmySzs4juB2nQboUQeqDn7c92PhnORiXcuF281Ym691-4tEMXbmO0Yxq2Ktfj16XD73ZP3BpJzMl2xqQ4UVbgm_S-TQrE98Vbzo5RPP-8J8X36-vnjZfy7v7m9vN-q6UhNJUKkQU4ZTUnVEthK3mkrSN4hoxCmvW4IojRblquVaINbpVFWcVbLMfqqtpS86LL4vuNKvRtDpfEeQgpmBHGX4KL634t-NsL7b-WSDEKkY5ygqfDgrB_5hNTGK0UZshW2T8HAXJqyCGa4b_A8W4opQwktHVgurgYwymO66EoNinLpbUxSH1PPDx70OO-J-YM_B5AfKg2Pk5uOzrS2q_Aa6Uut8</recordid><startdate>20241113</startdate><enddate>20241113</enddate><creator>Singh, Ramesh</creator><creator>Popat, Ketul C.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2417-7789</orcidid><orcidid>https://orcid.org/0000-0002-2874-4971</orcidid></search><sort><creationdate>20241113</creationdate><title>Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes</title><author>Singh, Ramesh ; Popat, Ketul C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-b13b38437febd00dc8a3d9b8c15407592681b48bd8cb159cdb68560d244bf74d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibacterial properties</topic><topic>bacterial adhesion</topic><topic>Bacterial Adhesion - drug effects</topic><topic>biocompatibility</topic><topic>biocompatible materials</topic><topic>biofilm</topic><topic>Biofilms - drug effects</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>dipeptides</topic><topic>Dipeptides - chemistry</topic><topic>Dipeptides - pharmacology</topic><topic>drug delivery systems</topic><topic>Fluorenes - chemistry</topic><topic>Fluorenes - pharmacology</topic><topic>nanotubes</topic><topic>Nanotubes - chemistry</topic><topic>Prostheses and Implants</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Surface Properties</topic><topic>titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium - pharmacology</topic><topic>titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Ramesh</creatorcontrib><creatorcontrib>Popat, Ketul C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Ramesh</au><au>Popat, Ketul C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-11-13</date><risdate>2024</risdate><volume>16</volume><issue>45</issue><spage>61714</spage><epage>61724</epage><pages>61714-61724</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial’s surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell–cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39478289</pmid><doi>10.1021/acsami.4c13885</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2417-7789</orcidid><orcidid>https://orcid.org/0000-0002-2874-4971</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-11, Vol.16 (45), p.61714-61724
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11565481
source MEDLINE; American Chemical Society Journals
subjects Anti-Bacterial Agents - chemical synthesis
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
antibacterial properties
bacterial adhesion
Bacterial Adhesion - drug effects
biocompatibility
biocompatible materials
biofilm
Biofilms - drug effects
Biological and Medical Applications of Materials and Interfaces
dipeptides
Dipeptides - chemistry
Dipeptides - pharmacology
drug delivery systems
Fluorenes - chemistry
Fluorenes - pharmacology
nanotubes
Nanotubes - chemistry
Prostheses and Implants
Staphylococcus aureus - drug effects
Surface Properties
titanium
Titanium - chemistry
Titanium - pharmacology
titanium dioxide
title Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Antibacterial%20Properties%20of%20Titanium%20Implants%20through%20Covalent%20Conjugation%20of%20Self-Assembling%20Fmoc-Phe-Phe%20Dipeptide%20on%20Titania%20Nanotubes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Singh,%20Ramesh&rft.date=2024-11-13&rft.volume=16&rft.issue=45&rft.spage=61714&rft.epage=61724&rft.pages=61714-61724&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c13885&rft_dat=%3Cproquest_pubme%3E3122644353%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122644353&rft_id=info:pmid/39478289&rfr_iscdi=true