Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes
Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial’s surface chemistry is vital for its desired functioning i...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-11, Vol.16 (45), p.61714-61724 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61724 |
---|---|
container_issue | 45 |
container_start_page | 61714 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Singh, Ramesh Popat, Ketul C. |
description | Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial’s surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell–cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization. |
doi_str_mv | 10.1021/acsami.4c13885 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11565481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122644353</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-b13b38437febd00dc8a3d9b8c15407592681b48bd8cb159cdb68560d244bf74d3</originalsourceid><addsrcrecordid>eNqNkUtr3DAUhU1paR7ttsuiZSl4oqctr8oweTQQmkDStZBkeazBllxJDvR39A9Xg6dDuwh0IXThfvdw7zlF8QHBFYIYXUgd5WhXVCPCOXtVnKKG0pJjhl8fa0pPirMYdxBWBEP2tjghDa055s1p8evK9dJp67Zg7ZJVUicTrBzAQ_CTCcmaCHwHnmySzs4juB2nQboUQeqDn7c92PhnORiXcuF281Ym691-4tEMXbmO0Yxq2Ktfj16XD73ZP3BpJzMl2xqQ4UVbgm_S-TQrE98Vbzo5RPP-8J8X36-vnjZfy7v7m9vN-q6UhNJUKkQU4ZTUnVEthK3mkrSN4hoxCmvW4IojRblquVaINbpVFWcVbLMfqqtpS86LL4vuNKvRtDpfEeQgpmBHGX4KL634t-NsL7b-WSDEKkY5ygqfDgrB_5hNTGK0UZshW2T8HAXJqyCGa4b_A8W4opQwktHVgurgYwymO66EoNinLpbUxSH1PPDx70OO-J-YM_B5AfKg2Pk5uOzrS2q_Aa6Uut8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122644353</pqid></control><display><type>article</type><title>Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Singh, Ramesh ; Popat, Ketul C.</creator><creatorcontrib>Singh, Ramesh ; Popat, Ketul C.</creatorcontrib><description>Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial’s surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell–cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c13885</identifier><identifier>PMID: 39478289</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; antibacterial properties ; bacterial adhesion ; Bacterial Adhesion - drug effects ; biocompatibility ; biocompatible materials ; biofilm ; Biofilms - drug effects ; Biological and Medical Applications of Materials and Interfaces ; dipeptides ; Dipeptides - chemistry ; Dipeptides - pharmacology ; drug delivery systems ; Fluorenes - chemistry ; Fluorenes - pharmacology ; nanotubes ; Nanotubes - chemistry ; Prostheses and Implants ; Staphylococcus aureus - drug effects ; Surface Properties ; titanium ; Titanium - chemistry ; Titanium - pharmacology ; titanium dioxide</subject><ispartof>ACS applied materials & interfaces, 2024-11, Vol.16 (45), p.61714-61724</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a344t-b13b38437febd00dc8a3d9b8c15407592681b48bd8cb159cdb68560d244bf74d3</cites><orcidid>0000-0002-2417-7789 ; 0000-0002-2874-4971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c13885$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c13885$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39478289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Ramesh</creatorcontrib><creatorcontrib>Popat, Ketul C.</creatorcontrib><title>Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial’s surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell–cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization.</description><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibacterial properties</subject><subject>bacterial adhesion</subject><subject>Bacterial Adhesion - drug effects</subject><subject>biocompatibility</subject><subject>biocompatible materials</subject><subject>biofilm</subject><subject>Biofilms - drug effects</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>dipeptides</subject><subject>Dipeptides - chemistry</subject><subject>Dipeptides - pharmacology</subject><subject>drug delivery systems</subject><subject>Fluorenes - chemistry</subject><subject>Fluorenes - pharmacology</subject><subject>nanotubes</subject><subject>Nanotubes - chemistry</subject><subject>Prostheses and Implants</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Surface Properties</subject><subject>titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium - pharmacology</subject><subject>titanium dioxide</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtr3DAUhU1paR7ttsuiZSl4oqctr8oweTQQmkDStZBkeazBllxJDvR39A9Xg6dDuwh0IXThfvdw7zlF8QHBFYIYXUgd5WhXVCPCOXtVnKKG0pJjhl8fa0pPirMYdxBWBEP2tjghDa055s1p8evK9dJp67Zg7ZJVUicTrBzAQ_CTCcmaCHwHnmySzs4juB2nQboUQeqDn7c92PhnORiXcuF281Ym691-4tEMXbmO0Yxq2Ktfj16XD73ZP3BpJzMl2xqQ4UVbgm_S-TQrE98Vbzo5RPP-8J8X36-vnjZfy7v7m9vN-q6UhNJUKkQU4ZTUnVEthK3mkrSN4hoxCmvW4IojRblquVaINbpVFWcVbLMfqqtpS86LL4vuNKvRtDpfEeQgpmBHGX4KL634t-NsL7b-WSDEKkY5ygqfDgrB_5hNTGK0UZshW2T8HAXJqyCGa4b_A8W4opQwktHVgurgYwymO66EoNinLpbUxSH1PPDx70OO-J-YM_B5AfKg2Pk5uOzrS2q_Aa6Uut8</recordid><startdate>20241113</startdate><enddate>20241113</enddate><creator>Singh, Ramesh</creator><creator>Popat, Ketul C.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2417-7789</orcidid><orcidid>https://orcid.org/0000-0002-2874-4971</orcidid></search><sort><creationdate>20241113</creationdate><title>Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes</title><author>Singh, Ramesh ; Popat, Ketul C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-b13b38437febd00dc8a3d9b8c15407592681b48bd8cb159cdb68560d244bf74d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibacterial properties</topic><topic>bacterial adhesion</topic><topic>Bacterial Adhesion - drug effects</topic><topic>biocompatibility</topic><topic>biocompatible materials</topic><topic>biofilm</topic><topic>Biofilms - drug effects</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>dipeptides</topic><topic>Dipeptides - chemistry</topic><topic>Dipeptides - pharmacology</topic><topic>drug delivery systems</topic><topic>Fluorenes - chemistry</topic><topic>Fluorenes - pharmacology</topic><topic>nanotubes</topic><topic>Nanotubes - chemistry</topic><topic>Prostheses and Implants</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Surface Properties</topic><topic>titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium - pharmacology</topic><topic>titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Ramesh</creatorcontrib><creatorcontrib>Popat, Ketul C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Ramesh</au><au>Popat, Ketul C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-11-13</date><risdate>2024</risdate><volume>16</volume><issue>45</issue><spage>61714</spage><epage>61724</epage><pages>61714-61724</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial’s surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell–cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39478289</pmid><doi>10.1021/acsami.4c13885</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2417-7789</orcidid><orcidid>https://orcid.org/0000-0002-2874-4971</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-11, Vol.16 (45), p.61714-61724 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11565481 |
source | MEDLINE; American Chemical Society Journals |
subjects | Anti-Bacterial Agents - chemical synthesis Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology antibacterial properties bacterial adhesion Bacterial Adhesion - drug effects biocompatibility biocompatible materials biofilm Biofilms - drug effects Biological and Medical Applications of Materials and Interfaces dipeptides Dipeptides - chemistry Dipeptides - pharmacology drug delivery systems Fluorenes - chemistry Fluorenes - pharmacology nanotubes Nanotubes - chemistry Prostheses and Implants Staphylococcus aureus - drug effects Surface Properties titanium Titanium - chemistry Titanium - pharmacology titanium dioxide |
title | Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Antibacterial%20Properties%20of%20Titanium%20Implants%20through%20Covalent%20Conjugation%20of%20Self-Assembling%20Fmoc-Phe-Phe%20Dipeptide%20on%20Titania%20Nanotubes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Singh,%20Ramesh&rft.date=2024-11-13&rft.volume=16&rft.issue=45&rft.spage=61714&rft.epage=61724&rft.pages=61714-61724&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c13885&rft_dat=%3Cproquest_pubme%3E3122644353%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122644353&rft_id=info:pmid/39478289&rfr_iscdi=true |