Computer modeling and validation testing for glenoid component rotation and optimal glenoid screw angles for reverse shoulder arthroplasty in an Asian population
Purpose Good initial fixation of glenoid component for reverse total shoulder arthroplasty (RTSA) relies on component placement and screw purchase in the scapula bone. This is especially difficult in an Asian population with small glenoid geometry. Optimal glenoid component roll angle and screw angu...
Gespeichert in:
Veröffentlicht in: | International orthopaedics 2024-12, Vol.48 (12), p.3151-3157 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3157 |
---|---|
container_issue | 12 |
container_start_page | 3151 |
container_title | International orthopaedics |
container_volume | 48 |
creator | Cheng, Shun Sing Martin Yung, Colin Shing-Yat Wong, Samuel De Hoi Yip, Christopher Chun Hei Khoo, Issac Jun Ren Wong, Tsoi Wan Karen Fang, Christian |
description | Purpose
Good initial fixation of glenoid component for reverse total shoulder arthroplasty (RTSA) relies on component placement and screw purchase in the scapula bone. This is especially difficult in an Asian population with small glenoid geometry. Optimal glenoid component roll angle and screw angulation to achieve the longest screws for best fixation has not been defined in the current literature.
Methods
Computer 3D modelling of 133 scapulas with RTSA performed were analyzed to determine patient specific optimal glenoid roll angle (GRA) for the longest bi-cortical screws attainable. The cranial-caudal angle (CCA), anterior-posterior angle (APA) and lengths for the superior and inferior screws were measured. Validation testing using calculated average (CA) angles and rounded average (RA) angles to the nearest 5 degree were recomputed for each case to determine the bi-cortical screw lengths achievable. The CA and RA screw lengths were compared against patient specific modelling using paired-sample t-tests.
Results
Average GRA was − 1.6°, almost perpendicular to the long axis of the glenoid and achieves an average bi-cortical screw length of 51.3 mm and 45.5 mm for the superior and inferior screws respectively. The CCA and APA were 9.1° cranial and 6.5° posterior for the superior screw and screw angulation of 11.2° caudal and 0.7° anterior for the inferior screw. Validation testing shows statistically shorter screw lengths in the CA and RA models compared to patient specific modelling (
p
38 mm with good safety profile. Surgeons may consider the additional use of navigation-assisted, or 3D printed patient specific instrumentation to optimize baseplate and screw configuration for RTSA. |
doi_str_mv | 10.1007/s00264-024-06340-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11564314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111206708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-c1a24f7fda17b03739f5aebf34ef4d090dd0bc9fe84368d9d41304b29c8e8cba3</originalsourceid><addsrcrecordid>eNp9UcuOFCEUJUbjtK0_4MKwdFPKq14rM-mMj2QSN7omFNzqZkJBCVSbmb_xT6W7xo5uXACB87jcexB6Tck7Skj7PhHCGlERVlbDBakenqANFZxVNe3rp2hDuKAVa_r6Cr1I6Y4Q2jYdfY6ueM9F23fNBv3ahWleMkQ8BQPO-j1W3uCjctaobIPHGVI-PY8h4r0DH6zBuoiCB59xDHmlnVRhznZS7kJLOsLPgpR7OusjHCEmwOkQFmdKURXzIYbZqZTvsT254Otkyz6HeXFn55fo2ahcgleP5xZ9_3jzbfe5uv366cvu-rbSnHW50lQxMbajUbQdCG95P9YKhpELGIUhPTGGDLofoRO86UxvBOVEDKzXHXR6UHyLPqy-8zJMYHTpLion51haivcyKCv_Rbw9yH04SkrrRvAy9y16--gQw4-ljE1ONmlwTnkIS5KcUspI05KuUNlK1TGkFGG81KFEnsKVa7iyhCvP4cqHInrz9w8vkj9pFgJfCalAfg9R3oUl-jK1_9n-Bicut2M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111206708</pqid></control><display><type>article</type><title>Computer modeling and validation testing for glenoid component rotation and optimal glenoid screw angles for reverse shoulder arthroplasty in an Asian population</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Cheng, Shun Sing Martin ; Yung, Colin Shing-Yat ; Wong, Samuel De Hoi ; Yip, Christopher Chun Hei ; Khoo, Issac Jun Ren ; Wong, Tsoi Wan Karen ; Fang, Christian</creator><creatorcontrib>Cheng, Shun Sing Martin ; Yung, Colin Shing-Yat ; Wong, Samuel De Hoi ; Yip, Christopher Chun Hei ; Khoo, Issac Jun Ren ; Wong, Tsoi Wan Karen ; Fang, Christian</creatorcontrib><description>Purpose
Good initial fixation of glenoid component for reverse total shoulder arthroplasty (RTSA) relies on component placement and screw purchase in the scapula bone. This is especially difficult in an Asian population with small glenoid geometry. Optimal glenoid component roll angle and screw angulation to achieve the longest screws for best fixation has not been defined in the current literature.
Methods
Computer 3D modelling of 133 scapulas with RTSA performed were analyzed to determine patient specific optimal glenoid roll angle (GRA) for the longest bi-cortical screws attainable. The cranial-caudal angle (CCA), anterior-posterior angle (APA) and lengths for the superior and inferior screws were measured. Validation testing using calculated average (CA) angles and rounded average (RA) angles to the nearest 5 degree were recomputed for each case to determine the bi-cortical screw lengths achievable. The CA and RA screw lengths were compared against patient specific modelling using paired-sample t-tests.
Results
Average GRA was − 1.6°, almost perpendicular to the long axis of the glenoid and achieves an average bi-cortical screw length of 51.3 mm and 45.5 mm for the superior and inferior screws respectively. The CCA and APA were 9.1° cranial and 6.5° posterior for the superior screw and screw angulation of 11.2° caudal and 0.7° anterior for the inferior screw. Validation testing shows statistically shorter screw lengths in the CA and RA models compared to patient specific modelling (
p
< 0.01).
Conclusion
Validation testing with average angles for GRA, CCA and APA demonstrates strong patient heterogeneity and anatomical variation. Despite this, screw lengths attainable in the RA group were > 38 mm with good safety profile. Surgeons may consider the additional use of navigation-assisted, or 3D printed patient specific instrumentation to optimize baseplate and screw configuration for RTSA.</description><identifier>ISSN: 0341-2695</identifier><identifier>ISSN: 1432-5195</identifier><identifier>EISSN: 1432-5195</identifier><identifier>DOI: 10.1007/s00264-024-06340-z</identifier><identifier>PMID: 39347986</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Aged ; Arthroplasty, Replacement, Shoulder - instrumentation ; Arthroplasty, Replacement, Shoulder - methods ; Asian People ; Bone Screws ; Computer Simulation ; Female ; Glenoid Cavity - anatomy & histology ; Glenoid Cavity - surgery ; Humans ; Imaging, Three-Dimensional - methods ; Male ; Medicine ; Medicine & Public Health ; Middle Aged ; Original Paper ; Orthopedics ; Rotation ; Scapula - anatomy & histology ; Scapula - surgery ; Shoulder Joint - anatomy & histology ; Shoulder Joint - surgery ; Shoulder Prosthesis</subject><ispartof>International orthopaedics, 2024-12, Vol.48 (12), p.3151-3157</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-c1a24f7fda17b03739f5aebf34ef4d090dd0bc9fe84368d9d41304b29c8e8cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00264-024-06340-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00264-024-06340-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39347986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Shun Sing Martin</creatorcontrib><creatorcontrib>Yung, Colin Shing-Yat</creatorcontrib><creatorcontrib>Wong, Samuel De Hoi</creatorcontrib><creatorcontrib>Yip, Christopher Chun Hei</creatorcontrib><creatorcontrib>Khoo, Issac Jun Ren</creatorcontrib><creatorcontrib>Wong, Tsoi Wan Karen</creatorcontrib><creatorcontrib>Fang, Christian</creatorcontrib><title>Computer modeling and validation testing for glenoid component rotation and optimal glenoid screw angles for reverse shoulder arthroplasty in an Asian population</title><title>International orthopaedics</title><addtitle>International Orthopaedics (SICOT)</addtitle><addtitle>Int Orthop</addtitle><description>Purpose
Good initial fixation of glenoid component for reverse total shoulder arthroplasty (RTSA) relies on component placement and screw purchase in the scapula bone. This is especially difficult in an Asian population with small glenoid geometry. Optimal glenoid component roll angle and screw angulation to achieve the longest screws for best fixation has not been defined in the current literature.
Methods
Computer 3D modelling of 133 scapulas with RTSA performed were analyzed to determine patient specific optimal glenoid roll angle (GRA) for the longest bi-cortical screws attainable. The cranial-caudal angle (CCA), anterior-posterior angle (APA) and lengths for the superior and inferior screws were measured. Validation testing using calculated average (CA) angles and rounded average (RA) angles to the nearest 5 degree were recomputed for each case to determine the bi-cortical screw lengths achievable. The CA and RA screw lengths were compared against patient specific modelling using paired-sample t-tests.
Results
Average GRA was − 1.6°, almost perpendicular to the long axis of the glenoid and achieves an average bi-cortical screw length of 51.3 mm and 45.5 mm for the superior and inferior screws respectively. The CCA and APA were 9.1° cranial and 6.5° posterior for the superior screw and screw angulation of 11.2° caudal and 0.7° anterior for the inferior screw. Validation testing shows statistically shorter screw lengths in the CA and RA models compared to patient specific modelling (
p
< 0.01).
Conclusion
Validation testing with average angles for GRA, CCA and APA demonstrates strong patient heterogeneity and anatomical variation. Despite this, screw lengths attainable in the RA group were > 38 mm with good safety profile. Surgeons may consider the additional use of navigation-assisted, or 3D printed patient specific instrumentation to optimize baseplate and screw configuration for RTSA.</description><subject>Adult</subject><subject>Aged</subject><subject>Arthroplasty, Replacement, Shoulder - instrumentation</subject><subject>Arthroplasty, Replacement, Shoulder - methods</subject><subject>Asian People</subject><subject>Bone Screws</subject><subject>Computer Simulation</subject><subject>Female</subject><subject>Glenoid Cavity - anatomy & histology</subject><subject>Glenoid Cavity - surgery</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Middle Aged</subject><subject>Original Paper</subject><subject>Orthopedics</subject><subject>Rotation</subject><subject>Scapula - anatomy & histology</subject><subject>Scapula - surgery</subject><subject>Shoulder Joint - anatomy & histology</subject><subject>Shoulder Joint - surgery</subject><subject>Shoulder Prosthesis</subject><issn>0341-2695</issn><issn>1432-5195</issn><issn>1432-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9UcuOFCEUJUbjtK0_4MKwdFPKq14rM-mMj2QSN7omFNzqZkJBCVSbmb_xT6W7xo5uXACB87jcexB6Tck7Skj7PhHCGlERVlbDBakenqANFZxVNe3rp2hDuKAVa_r6Cr1I6Y4Q2jYdfY6ueM9F23fNBv3ahWleMkQ8BQPO-j1W3uCjctaobIPHGVI-PY8h4r0DH6zBuoiCB59xDHmlnVRhznZS7kJLOsLPgpR7OusjHCEmwOkQFmdKURXzIYbZqZTvsT254Otkyz6HeXFn55fo2ahcgleP5xZ9_3jzbfe5uv366cvu-rbSnHW50lQxMbajUbQdCG95P9YKhpELGIUhPTGGDLofoRO86UxvBOVEDKzXHXR6UHyLPqy-8zJMYHTpLion51haivcyKCv_Rbw9yH04SkrrRvAy9y16--gQw4-ljE1ONmlwTnkIS5KcUspI05KuUNlK1TGkFGG81KFEnsKVa7iyhCvP4cqHInrz9w8vkj9pFgJfCalAfg9R3oUl-jK1_9n-Bicut2M</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cheng, Shun Sing Martin</creator><creator>Yung, Colin Shing-Yat</creator><creator>Wong, Samuel De Hoi</creator><creator>Yip, Christopher Chun Hei</creator><creator>Khoo, Issac Jun Ren</creator><creator>Wong, Tsoi Wan Karen</creator><creator>Fang, Christian</creator><general>Springer Berlin Heidelberg</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241201</creationdate><title>Computer modeling and validation testing for glenoid component rotation and optimal glenoid screw angles for reverse shoulder arthroplasty in an Asian population</title><author>Cheng, Shun Sing Martin ; Yung, Colin Shing-Yat ; Wong, Samuel De Hoi ; Yip, Christopher Chun Hei ; Khoo, Issac Jun Ren ; Wong, Tsoi Wan Karen ; Fang, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-c1a24f7fda17b03739f5aebf34ef4d090dd0bc9fe84368d9d41304b29c8e8cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Arthroplasty, Replacement, Shoulder - instrumentation</topic><topic>Arthroplasty, Replacement, Shoulder - methods</topic><topic>Asian People</topic><topic>Bone Screws</topic><topic>Computer Simulation</topic><topic>Female</topic><topic>Glenoid Cavity - anatomy & histology</topic><topic>Glenoid Cavity - surgery</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Middle Aged</topic><topic>Original Paper</topic><topic>Orthopedics</topic><topic>Rotation</topic><topic>Scapula - anatomy & histology</topic><topic>Scapula - surgery</topic><topic>Shoulder Joint - anatomy & histology</topic><topic>Shoulder Joint - surgery</topic><topic>Shoulder Prosthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Shun Sing Martin</creatorcontrib><creatorcontrib>Yung, Colin Shing-Yat</creatorcontrib><creatorcontrib>Wong, Samuel De Hoi</creatorcontrib><creatorcontrib>Yip, Christopher Chun Hei</creatorcontrib><creatorcontrib>Khoo, Issac Jun Ren</creatorcontrib><creatorcontrib>Wong, Tsoi Wan Karen</creatorcontrib><creatorcontrib>Fang, Christian</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International orthopaedics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Shun Sing Martin</au><au>Yung, Colin Shing-Yat</au><au>Wong, Samuel De Hoi</au><au>Yip, Christopher Chun Hei</au><au>Khoo, Issac Jun Ren</au><au>Wong, Tsoi Wan Karen</au><au>Fang, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer modeling and validation testing for glenoid component rotation and optimal glenoid screw angles for reverse shoulder arthroplasty in an Asian population</atitle><jtitle>International orthopaedics</jtitle><stitle>International Orthopaedics (SICOT)</stitle><addtitle>Int Orthop</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>48</volume><issue>12</issue><spage>3151</spage><epage>3157</epage><pages>3151-3157</pages><issn>0341-2695</issn><issn>1432-5195</issn><eissn>1432-5195</eissn><abstract>Purpose
Good initial fixation of glenoid component for reverse total shoulder arthroplasty (RTSA) relies on component placement and screw purchase in the scapula bone. This is especially difficult in an Asian population with small glenoid geometry. Optimal glenoid component roll angle and screw angulation to achieve the longest screws for best fixation has not been defined in the current literature.
Methods
Computer 3D modelling of 133 scapulas with RTSA performed were analyzed to determine patient specific optimal glenoid roll angle (GRA) for the longest bi-cortical screws attainable. The cranial-caudal angle (CCA), anterior-posterior angle (APA) and lengths for the superior and inferior screws were measured. Validation testing using calculated average (CA) angles and rounded average (RA) angles to the nearest 5 degree were recomputed for each case to determine the bi-cortical screw lengths achievable. The CA and RA screw lengths were compared against patient specific modelling using paired-sample t-tests.
Results
Average GRA was − 1.6°, almost perpendicular to the long axis of the glenoid and achieves an average bi-cortical screw length of 51.3 mm and 45.5 mm for the superior and inferior screws respectively. The CCA and APA were 9.1° cranial and 6.5° posterior for the superior screw and screw angulation of 11.2° caudal and 0.7° anterior for the inferior screw. Validation testing shows statistically shorter screw lengths in the CA and RA models compared to patient specific modelling (
p
< 0.01).
Conclusion
Validation testing with average angles for GRA, CCA and APA demonstrates strong patient heterogeneity and anatomical variation. Despite this, screw lengths attainable in the RA group were > 38 mm with good safety profile. Surgeons may consider the additional use of navigation-assisted, or 3D printed patient specific instrumentation to optimize baseplate and screw configuration for RTSA.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39347986</pmid><doi>10.1007/s00264-024-06340-z</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0341-2695 |
ispartof | International orthopaedics, 2024-12, Vol.48 (12), p.3151-3157 |
issn | 0341-2695 1432-5195 1432-5195 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11564314 |
source | MEDLINE; Springer Online Journals Complete |
subjects | Adult Aged Arthroplasty, Replacement, Shoulder - instrumentation Arthroplasty, Replacement, Shoulder - methods Asian People Bone Screws Computer Simulation Female Glenoid Cavity - anatomy & histology Glenoid Cavity - surgery Humans Imaging, Three-Dimensional - methods Male Medicine Medicine & Public Health Middle Aged Original Paper Orthopedics Rotation Scapula - anatomy & histology Scapula - surgery Shoulder Joint - anatomy & histology Shoulder Joint - surgery Shoulder Prosthesis |
title | Computer modeling and validation testing for glenoid component rotation and optimal glenoid screw angles for reverse shoulder arthroplasty in an Asian population |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A46%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20modeling%20and%20validation%20testing%20for%20glenoid%20component%20rotation%20and%20optimal%20glenoid%20screw%20angles%20for%20reverse%20shoulder%20arthroplasty%20in%20an%20Asian%20population&rft.jtitle=International%20orthopaedics&rft.au=Cheng,%20Shun%20Sing%20Martin&rft.date=2024-12-01&rft.volume=48&rft.issue=12&rft.spage=3151&rft.epage=3157&rft.pages=3151-3157&rft.issn=0341-2695&rft.eissn=1432-5195&rft_id=info:doi/10.1007/s00264-024-06340-z&rft_dat=%3Cproquest_pubme%3E3111206708%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111206708&rft_id=info:pmid/39347986&rfr_iscdi=true |