Computer modeling and validation testing for glenoid component rotation and optimal glenoid screw angles for reverse shoulder arthroplasty in an Asian population

Purpose Good initial fixation of glenoid component for reverse total shoulder arthroplasty (RTSA) relies on component placement and screw purchase in the scapula bone. This is especially difficult in an Asian population with small glenoid geometry. Optimal glenoid component roll angle and screw angu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International orthopaedics 2024-12, Vol.48 (12), p.3151-3157
Hauptverfasser: Cheng, Shun Sing Martin, Yung, Colin Shing-Yat, Wong, Samuel De Hoi, Yip, Christopher Chun Hei, Khoo, Issac Jun Ren, Wong, Tsoi Wan Karen, Fang, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3157
container_issue 12
container_start_page 3151
container_title International orthopaedics
container_volume 48
creator Cheng, Shun Sing Martin
Yung, Colin Shing-Yat
Wong, Samuel De Hoi
Yip, Christopher Chun Hei
Khoo, Issac Jun Ren
Wong, Tsoi Wan Karen
Fang, Christian
description Purpose Good initial fixation of glenoid component for reverse total shoulder arthroplasty (RTSA) relies on component placement and screw purchase in the scapula bone. This is especially difficult in an Asian population with small glenoid geometry. Optimal glenoid component roll angle and screw angulation to achieve the longest screws for best fixation has not been defined in the current literature. Methods Computer 3D modelling of 133 scapulas with RTSA performed were analyzed to determine patient specific optimal glenoid roll angle (GRA) for the longest bi-cortical screws attainable. The cranial-caudal angle (CCA), anterior-posterior angle (APA) and lengths for the superior and inferior screws were measured. Validation testing using calculated average (CA) angles and rounded average (RA) angles to the nearest 5 degree were recomputed for each case to determine the bi-cortical screw lengths achievable. The CA and RA screw lengths were compared against patient specific modelling using paired-sample t-tests. Results Average GRA was − 1.6°, almost perpendicular to the long axis of the glenoid and achieves an average bi-cortical screw length of 51.3 mm and 45.5 mm for the superior and inferior screws respectively. The CCA and APA were 9.1° cranial and 6.5° posterior for the superior screw and screw angulation of 11.2° caudal and 0.7° anterior for the inferior screw. Validation testing shows statistically shorter screw lengths in the CA and RA models compared to patient specific modelling ( p   38 mm with good safety profile. Surgeons may consider the additional use of navigation-assisted, or 3D printed patient specific instrumentation to optimize baseplate and screw configuration for RTSA.
doi_str_mv 10.1007/s00264-024-06340-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11564314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111206708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-c1a24f7fda17b03739f5aebf34ef4d090dd0bc9fe84368d9d41304b29c8e8cba3</originalsourceid><addsrcrecordid>eNp9UcuOFCEUJUbjtK0_4MKwdFPKq14rM-mMj2QSN7omFNzqZkJBCVSbmb_xT6W7xo5uXACB87jcexB6Tck7Skj7PhHCGlERVlbDBakenqANFZxVNe3rp2hDuKAVa_r6Cr1I6Y4Q2jYdfY6ueM9F23fNBv3ahWleMkQ8BQPO-j1W3uCjctaobIPHGVI-PY8h4r0DH6zBuoiCB59xDHmlnVRhznZS7kJLOsLPgpR7OusjHCEmwOkQFmdKURXzIYbZqZTvsT254Otkyz6HeXFn55fo2ahcgleP5xZ9_3jzbfe5uv366cvu-rbSnHW50lQxMbajUbQdCG95P9YKhpELGIUhPTGGDLofoRO86UxvBOVEDKzXHXR6UHyLPqy-8zJMYHTpLion51haivcyKCv_Rbw9yH04SkrrRvAy9y16--gQw4-ljE1ONmlwTnkIS5KcUspI05KuUNlK1TGkFGG81KFEnsKVa7iyhCvP4cqHInrz9w8vkj9pFgJfCalAfg9R3oUl-jK1_9n-Bicut2M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111206708</pqid></control><display><type>article</type><title>Computer modeling and validation testing for glenoid component rotation and optimal glenoid screw angles for reverse shoulder arthroplasty in an Asian population</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Cheng, Shun Sing Martin ; Yung, Colin Shing-Yat ; Wong, Samuel De Hoi ; Yip, Christopher Chun Hei ; Khoo, Issac Jun Ren ; Wong, Tsoi Wan Karen ; Fang, Christian</creator><creatorcontrib>Cheng, Shun Sing Martin ; Yung, Colin Shing-Yat ; Wong, Samuel De Hoi ; Yip, Christopher Chun Hei ; Khoo, Issac Jun Ren ; Wong, Tsoi Wan Karen ; Fang, Christian</creatorcontrib><description>Purpose Good initial fixation of glenoid component for reverse total shoulder arthroplasty (RTSA) relies on component placement and screw purchase in the scapula bone. This is especially difficult in an Asian population with small glenoid geometry. Optimal glenoid component roll angle and screw angulation to achieve the longest screws for best fixation has not been defined in the current literature. Methods Computer 3D modelling of 133 scapulas with RTSA performed were analyzed to determine patient specific optimal glenoid roll angle (GRA) for the longest bi-cortical screws attainable. The cranial-caudal angle (CCA), anterior-posterior angle (APA) and lengths for the superior and inferior screws were measured. Validation testing using calculated average (CA) angles and rounded average (RA) angles to the nearest 5 degree were recomputed for each case to determine the bi-cortical screw lengths achievable. The CA and RA screw lengths were compared against patient specific modelling using paired-sample t-tests. Results Average GRA was − 1.6°, almost perpendicular to the long axis of the glenoid and achieves an average bi-cortical screw length of 51.3 mm and 45.5 mm for the superior and inferior screws respectively. The CCA and APA were 9.1° cranial and 6.5° posterior for the superior screw and screw angulation of 11.2° caudal and 0.7° anterior for the inferior screw. Validation testing shows statistically shorter screw lengths in the CA and RA models compared to patient specific modelling ( p  &lt; 0.01). Conclusion Validation testing with average angles for GRA, CCA and APA demonstrates strong patient heterogeneity and anatomical variation. Despite this, screw lengths attainable in the RA group were &gt; 38 mm with good safety profile. Surgeons may consider the additional use of navigation-assisted, or 3D printed patient specific instrumentation to optimize baseplate and screw configuration for RTSA.</description><identifier>ISSN: 0341-2695</identifier><identifier>ISSN: 1432-5195</identifier><identifier>EISSN: 1432-5195</identifier><identifier>DOI: 10.1007/s00264-024-06340-z</identifier><identifier>PMID: 39347986</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Aged ; Arthroplasty, Replacement, Shoulder - instrumentation ; Arthroplasty, Replacement, Shoulder - methods ; Asian People ; Bone Screws ; Computer Simulation ; Female ; Glenoid Cavity - anatomy &amp; histology ; Glenoid Cavity - surgery ; Humans ; Imaging, Three-Dimensional - methods ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Original Paper ; Orthopedics ; Rotation ; Scapula - anatomy &amp; histology ; Scapula - surgery ; Shoulder Joint - anatomy &amp; histology ; Shoulder Joint - surgery ; Shoulder Prosthesis</subject><ispartof>International orthopaedics, 2024-12, Vol.48 (12), p.3151-3157</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-c1a24f7fda17b03739f5aebf34ef4d090dd0bc9fe84368d9d41304b29c8e8cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00264-024-06340-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00264-024-06340-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39347986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Shun Sing Martin</creatorcontrib><creatorcontrib>Yung, Colin Shing-Yat</creatorcontrib><creatorcontrib>Wong, Samuel De Hoi</creatorcontrib><creatorcontrib>Yip, Christopher Chun Hei</creatorcontrib><creatorcontrib>Khoo, Issac Jun Ren</creatorcontrib><creatorcontrib>Wong, Tsoi Wan Karen</creatorcontrib><creatorcontrib>Fang, Christian</creatorcontrib><title>Computer modeling and validation testing for glenoid component rotation and optimal glenoid screw angles for reverse shoulder arthroplasty in an Asian population</title><title>International orthopaedics</title><addtitle>International Orthopaedics (SICOT)</addtitle><addtitle>Int Orthop</addtitle><description>Purpose Good initial fixation of glenoid component for reverse total shoulder arthroplasty (RTSA) relies on component placement and screw purchase in the scapula bone. This is especially difficult in an Asian population with small glenoid geometry. Optimal glenoid component roll angle and screw angulation to achieve the longest screws for best fixation has not been defined in the current literature. Methods Computer 3D modelling of 133 scapulas with RTSA performed were analyzed to determine patient specific optimal glenoid roll angle (GRA) for the longest bi-cortical screws attainable. The cranial-caudal angle (CCA), anterior-posterior angle (APA) and lengths for the superior and inferior screws were measured. Validation testing using calculated average (CA) angles and rounded average (RA) angles to the nearest 5 degree were recomputed for each case to determine the bi-cortical screw lengths achievable. The CA and RA screw lengths were compared against patient specific modelling using paired-sample t-tests. Results Average GRA was − 1.6°, almost perpendicular to the long axis of the glenoid and achieves an average bi-cortical screw length of 51.3 mm and 45.5 mm for the superior and inferior screws respectively. The CCA and APA were 9.1° cranial and 6.5° posterior for the superior screw and screw angulation of 11.2° caudal and 0.7° anterior for the inferior screw. Validation testing shows statistically shorter screw lengths in the CA and RA models compared to patient specific modelling ( p  &lt; 0.01). Conclusion Validation testing with average angles for GRA, CCA and APA demonstrates strong patient heterogeneity and anatomical variation. Despite this, screw lengths attainable in the RA group were &gt; 38 mm with good safety profile. Surgeons may consider the additional use of navigation-assisted, or 3D printed patient specific instrumentation to optimize baseplate and screw configuration for RTSA.</description><subject>Adult</subject><subject>Aged</subject><subject>Arthroplasty, Replacement, Shoulder - instrumentation</subject><subject>Arthroplasty, Replacement, Shoulder - methods</subject><subject>Asian People</subject><subject>Bone Screws</subject><subject>Computer Simulation</subject><subject>Female</subject><subject>Glenoid Cavity - anatomy &amp; histology</subject><subject>Glenoid Cavity - surgery</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Original Paper</subject><subject>Orthopedics</subject><subject>Rotation</subject><subject>Scapula - anatomy &amp; histology</subject><subject>Scapula - surgery</subject><subject>Shoulder Joint - anatomy &amp; histology</subject><subject>Shoulder Joint - surgery</subject><subject>Shoulder Prosthesis</subject><issn>0341-2695</issn><issn>1432-5195</issn><issn>1432-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9UcuOFCEUJUbjtK0_4MKwdFPKq14rM-mMj2QSN7omFNzqZkJBCVSbmb_xT6W7xo5uXACB87jcexB6Tck7Skj7PhHCGlERVlbDBakenqANFZxVNe3rp2hDuKAVa_r6Cr1I6Y4Q2jYdfY6ueM9F23fNBv3ahWleMkQ8BQPO-j1W3uCjctaobIPHGVI-PY8h4r0DH6zBuoiCB59xDHmlnVRhznZS7kJLOsLPgpR7OusjHCEmwOkQFmdKURXzIYbZqZTvsT254Otkyz6HeXFn55fo2ahcgleP5xZ9_3jzbfe5uv366cvu-rbSnHW50lQxMbajUbQdCG95P9YKhpELGIUhPTGGDLofoRO86UxvBOVEDKzXHXR6UHyLPqy-8zJMYHTpLion51haivcyKCv_Rbw9yH04SkrrRvAy9y16--gQw4-ljE1ONmlwTnkIS5KcUspI05KuUNlK1TGkFGG81KFEnsKVa7iyhCvP4cqHInrz9w8vkj9pFgJfCalAfg9R3oUl-jK1_9n-Bicut2M</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cheng, Shun Sing Martin</creator><creator>Yung, Colin Shing-Yat</creator><creator>Wong, Samuel De Hoi</creator><creator>Yip, Christopher Chun Hei</creator><creator>Khoo, Issac Jun Ren</creator><creator>Wong, Tsoi Wan Karen</creator><creator>Fang, Christian</creator><general>Springer Berlin Heidelberg</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241201</creationdate><title>Computer modeling and validation testing for glenoid component rotation and optimal glenoid screw angles for reverse shoulder arthroplasty in an Asian population</title><author>Cheng, Shun Sing Martin ; Yung, Colin Shing-Yat ; Wong, Samuel De Hoi ; Yip, Christopher Chun Hei ; Khoo, Issac Jun Ren ; Wong, Tsoi Wan Karen ; Fang, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-c1a24f7fda17b03739f5aebf34ef4d090dd0bc9fe84368d9d41304b29c8e8cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Arthroplasty, Replacement, Shoulder - instrumentation</topic><topic>Arthroplasty, Replacement, Shoulder - methods</topic><topic>Asian People</topic><topic>Bone Screws</topic><topic>Computer Simulation</topic><topic>Female</topic><topic>Glenoid Cavity - anatomy &amp; histology</topic><topic>Glenoid Cavity - surgery</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Original Paper</topic><topic>Orthopedics</topic><topic>Rotation</topic><topic>Scapula - anatomy &amp; histology</topic><topic>Scapula - surgery</topic><topic>Shoulder Joint - anatomy &amp; histology</topic><topic>Shoulder Joint - surgery</topic><topic>Shoulder Prosthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Shun Sing Martin</creatorcontrib><creatorcontrib>Yung, Colin Shing-Yat</creatorcontrib><creatorcontrib>Wong, Samuel De Hoi</creatorcontrib><creatorcontrib>Yip, Christopher Chun Hei</creatorcontrib><creatorcontrib>Khoo, Issac Jun Ren</creatorcontrib><creatorcontrib>Wong, Tsoi Wan Karen</creatorcontrib><creatorcontrib>Fang, Christian</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International orthopaedics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Shun Sing Martin</au><au>Yung, Colin Shing-Yat</au><au>Wong, Samuel De Hoi</au><au>Yip, Christopher Chun Hei</au><au>Khoo, Issac Jun Ren</au><au>Wong, Tsoi Wan Karen</au><au>Fang, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer modeling and validation testing for glenoid component rotation and optimal glenoid screw angles for reverse shoulder arthroplasty in an Asian population</atitle><jtitle>International orthopaedics</jtitle><stitle>International Orthopaedics (SICOT)</stitle><addtitle>Int Orthop</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>48</volume><issue>12</issue><spage>3151</spage><epage>3157</epage><pages>3151-3157</pages><issn>0341-2695</issn><issn>1432-5195</issn><eissn>1432-5195</eissn><abstract>Purpose Good initial fixation of glenoid component for reverse total shoulder arthroplasty (RTSA) relies on component placement and screw purchase in the scapula bone. This is especially difficult in an Asian population with small glenoid geometry. Optimal glenoid component roll angle and screw angulation to achieve the longest screws for best fixation has not been defined in the current literature. Methods Computer 3D modelling of 133 scapulas with RTSA performed were analyzed to determine patient specific optimal glenoid roll angle (GRA) for the longest bi-cortical screws attainable. The cranial-caudal angle (CCA), anterior-posterior angle (APA) and lengths for the superior and inferior screws were measured. Validation testing using calculated average (CA) angles and rounded average (RA) angles to the nearest 5 degree were recomputed for each case to determine the bi-cortical screw lengths achievable. The CA and RA screw lengths were compared against patient specific modelling using paired-sample t-tests. Results Average GRA was − 1.6°, almost perpendicular to the long axis of the glenoid and achieves an average bi-cortical screw length of 51.3 mm and 45.5 mm for the superior and inferior screws respectively. The CCA and APA were 9.1° cranial and 6.5° posterior for the superior screw and screw angulation of 11.2° caudal and 0.7° anterior for the inferior screw. Validation testing shows statistically shorter screw lengths in the CA and RA models compared to patient specific modelling ( p  &lt; 0.01). Conclusion Validation testing with average angles for GRA, CCA and APA demonstrates strong patient heterogeneity and anatomical variation. Despite this, screw lengths attainable in the RA group were &gt; 38 mm with good safety profile. Surgeons may consider the additional use of navigation-assisted, or 3D printed patient specific instrumentation to optimize baseplate and screw configuration for RTSA.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39347986</pmid><doi>10.1007/s00264-024-06340-z</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0341-2695
ispartof International orthopaedics, 2024-12, Vol.48 (12), p.3151-3157
issn 0341-2695
1432-5195
1432-5195
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11564314
source MEDLINE; Springer Online Journals Complete
subjects Adult
Aged
Arthroplasty, Replacement, Shoulder - instrumentation
Arthroplasty, Replacement, Shoulder - methods
Asian People
Bone Screws
Computer Simulation
Female
Glenoid Cavity - anatomy & histology
Glenoid Cavity - surgery
Humans
Imaging, Three-Dimensional - methods
Male
Medicine
Medicine & Public Health
Middle Aged
Original Paper
Orthopedics
Rotation
Scapula - anatomy & histology
Scapula - surgery
Shoulder Joint - anatomy & histology
Shoulder Joint - surgery
Shoulder Prosthesis
title Computer modeling and validation testing for glenoid component rotation and optimal glenoid screw angles for reverse shoulder arthroplasty in an Asian population
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A46%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20modeling%20and%20validation%20testing%20for%20glenoid%20component%20rotation%20and%20optimal%20glenoid%20screw%20angles%20for%20reverse%20shoulder%20arthroplasty%20in%20an%20Asian%20population&rft.jtitle=International%20orthopaedics&rft.au=Cheng,%20Shun%20Sing%20Martin&rft.date=2024-12-01&rft.volume=48&rft.issue=12&rft.spage=3151&rft.epage=3157&rft.pages=3151-3157&rft.issn=0341-2695&rft.eissn=1432-5195&rft_id=info:doi/10.1007/s00264-024-06340-z&rft_dat=%3Cproquest_pubme%3E3111206708%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111206708&rft_id=info:pmid/39347986&rfr_iscdi=true