Development of Artificial Intelligence Models for Tooth Numbering and Detection: A Systematic Review
Dental radiography is widely used in dental practices and offers a valuable resource for the development of AI technology. Consequently, many researchers have been drawn to explore its application in different areas. The current systematic review was undertaken to critically appraise developments an...
Gespeichert in:
Veröffentlicht in: | International dental journal 2024-10, Vol.74 (5), p.917-929 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 929 |
---|---|
container_issue | 5 |
container_start_page | 917 |
container_title | International dental journal |
container_volume | 74 |
creator | Maganur, Prabhadevi C. Vishwanathaiah, Satish Mashyakhy, Mohammed Abumelha, Abdulaziz S. Robaian, Ali Almohareb, Thamer Almutairi, Basil Alzahrani, Khaled M. Binalrimal, Sultan Marwah, Nikhil Khanagar, Sanjeev B. Manoharan, Varsha |
description | Dental radiography is widely used in dental practices and offers a valuable resource for the development of AI technology. Consequently, many researchers have been drawn to explore its application in different areas. The current systematic review was undertaken to critically appraise developments and performance of artificial intelligence (AI) models designed for tooth numbering and detection using dento-maxillofacial radiographic images. In order to maintain the integrity of their methodology, the authors of this systematic review followed the diagnostic test accuracy criteria outlined in PRISMA-DTA. Electronic search was done by navigating through various databases such as PubMed, Scopus, Embase, Cochrane, Web of Science, Google Scholar, and the Saudi Digital Library for the articles published from 2018 to 2023. Sixteen articles that met the inclusion exclusion criteria were subjected to risk of bias assessment using QUADAS-2 and certainty of evidence was assessed using GRADE approach.AI technology has been mainly applied for automated tooth detection and numbering, to detect teeth in CBCT images, to identify dental treatment patterns and approaches. The AI models utilised in the studies included exhibited a highest precision of 99.4% for tooth detection and 98% for tooth numbering. The use of AI as a supplementary diagnostic tool in the field of dental radiology holds great potential. |
doi_str_mv | 10.1016/j.identj.2024.04.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11563160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002065392400128X</els_id><sourcerecordid>3065982320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-4f1df108b1f58c1f59b7c7e03707202f04870af108a785f61ac210f8a2baa4dc3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRAV3Rb-AUI-csnijzhxOIBW_aJSAQmKxM1y7PHWqyRebO-i_nscbVvBBWk0c5g3b2beQ-g1JUtKaPNus_QWprxZMsLqJSnB6DO0oLIVlejEz-doQQgjVSN4d4xOUtoQUktOmhfomEspaMfpAtlz2MMQtmOhwsHhVczeeeP1gK-nDMPg1zAZwJ-DhSFhFyK-DSHf4S-7sYfopzXWk8XnkMFkH6b3eIW_36cMo87e4G-w9_D7JTpyekjw6qGeoh-XF7dnn6qbr1fXZ6ubytSU56p21DpKZE-dkKakrm9NC4S3pC1PunJ-S_SM0K0UrqHaMEqc1KzXuraGn6KPB97trh_BmvJT1IPaRj_qeK-C9urfzuTv1DrsFaWi4bQhheHtA0MMv3aQshp9MkUGPUHYJVXkE51knM3Q-gA1MaQUwT3toUTNDqmNOjikZocUKcFoGXvz941PQ4-WFMCHA6DoPasXVTJ-9sD6WDRWNvj_b_gDJe2lrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065982320</pqid></control><display><type>article</type><title>Development of Artificial Intelligence Models for Tooth Numbering and Detection: A Systematic Review</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Maganur, Prabhadevi C. ; Vishwanathaiah, Satish ; Mashyakhy, Mohammed ; Abumelha, Abdulaziz S. ; Robaian, Ali ; Almohareb, Thamer ; Almutairi, Basil ; Alzahrani, Khaled M. ; Binalrimal, Sultan ; Marwah, Nikhil ; Khanagar, Sanjeev B. ; Manoharan, Varsha</creator><creatorcontrib>Maganur, Prabhadevi C. ; Vishwanathaiah, Satish ; Mashyakhy, Mohammed ; Abumelha, Abdulaziz S. ; Robaian, Ali ; Almohareb, Thamer ; Almutairi, Basil ; Alzahrani, Khaled M. ; Binalrimal, Sultan ; Marwah, Nikhil ; Khanagar, Sanjeev B. ; Manoharan, Varsha</creatorcontrib><description>Dental radiography is widely used in dental practices and offers a valuable resource for the development of AI technology. Consequently, many researchers have been drawn to explore its application in different areas. The current systematic review was undertaken to critically appraise developments and performance of artificial intelligence (AI) models designed for tooth numbering and detection using dento-maxillofacial radiographic images. In order to maintain the integrity of their methodology, the authors of this systematic review followed the diagnostic test accuracy criteria outlined in PRISMA-DTA. Electronic search was done by navigating through various databases such as PubMed, Scopus, Embase, Cochrane, Web of Science, Google Scholar, and the Saudi Digital Library for the articles published from 2018 to 2023. Sixteen articles that met the inclusion exclusion criteria were subjected to risk of bias assessment using QUADAS-2 and certainty of evidence was assessed using GRADE approach.AI technology has been mainly applied for automated tooth detection and numbering, to detect teeth in CBCT images, to identify dental treatment patterns and approaches. The AI models utilised in the studies included exhibited a highest precision of 99.4% for tooth detection and 98% for tooth numbering. The use of AI as a supplementary diagnostic tool in the field of dental radiology holds great potential.</description><identifier>ISSN: 0020-6539</identifier><identifier>ISSN: 1875-595X</identifier><identifier>EISSN: 1875-595X</identifier><identifier>DOI: 10.1016/j.identj.2024.04.021</identifier><identifier>PMID: 38851931</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Artificial Intelligence ; CNN ; Concise Review ; Cone-Beam Computed Tomography ; Humans ; Radiographic images ; Radiography, Dental - methods ; Tooth - diagnostic imaging ; Tooth detection ; Tooth numbering</subject><ispartof>International dental journal, 2024-10, Vol.74 (5), p.917-929</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c413t-4f1df108b1f58c1f59b7c7e03707202f04870af108a785f61ac210f8a2baa4dc3</cites><orcidid>0000-0002-8376-297X ; 0009-0007-1604-1332 ; 0000-0001-6273-0357 ; 0000-0002-8234-8929 ; 0000-0003-4012-6591 ; 0000-0002-5753-6725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563160/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563160/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38851931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maganur, Prabhadevi C.</creatorcontrib><creatorcontrib>Vishwanathaiah, Satish</creatorcontrib><creatorcontrib>Mashyakhy, Mohammed</creatorcontrib><creatorcontrib>Abumelha, Abdulaziz S.</creatorcontrib><creatorcontrib>Robaian, Ali</creatorcontrib><creatorcontrib>Almohareb, Thamer</creatorcontrib><creatorcontrib>Almutairi, Basil</creatorcontrib><creatorcontrib>Alzahrani, Khaled M.</creatorcontrib><creatorcontrib>Binalrimal, Sultan</creatorcontrib><creatorcontrib>Marwah, Nikhil</creatorcontrib><creatorcontrib>Khanagar, Sanjeev B.</creatorcontrib><creatorcontrib>Manoharan, Varsha</creatorcontrib><title>Development of Artificial Intelligence Models for Tooth Numbering and Detection: A Systematic Review</title><title>International dental journal</title><addtitle>Int Dent J</addtitle><description>Dental radiography is widely used in dental practices and offers a valuable resource for the development of AI technology. Consequently, many researchers have been drawn to explore its application in different areas. The current systematic review was undertaken to critically appraise developments and performance of artificial intelligence (AI) models designed for tooth numbering and detection using dento-maxillofacial radiographic images. In order to maintain the integrity of their methodology, the authors of this systematic review followed the diagnostic test accuracy criteria outlined in PRISMA-DTA. Electronic search was done by navigating through various databases such as PubMed, Scopus, Embase, Cochrane, Web of Science, Google Scholar, and the Saudi Digital Library for the articles published from 2018 to 2023. Sixteen articles that met the inclusion exclusion criteria were subjected to risk of bias assessment using QUADAS-2 and certainty of evidence was assessed using GRADE approach.AI technology has been mainly applied for automated tooth detection and numbering, to detect teeth in CBCT images, to identify dental treatment patterns and approaches. The AI models utilised in the studies included exhibited a highest precision of 99.4% for tooth detection and 98% for tooth numbering. The use of AI as a supplementary diagnostic tool in the field of dental radiology holds great potential.</description><subject>Artificial Intelligence</subject><subject>CNN</subject><subject>Concise Review</subject><subject>Cone-Beam Computed Tomography</subject><subject>Humans</subject><subject>Radiographic images</subject><subject>Radiography, Dental - methods</subject><subject>Tooth - diagnostic imaging</subject><subject>Tooth detection</subject><subject>Tooth numbering</subject><issn>0020-6539</issn><issn>1875-595X</issn><issn>1875-595X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQtRAV3Rb-AUI-csnijzhxOIBW_aJSAQmKxM1y7PHWqyRebO-i_nscbVvBBWk0c5g3b2beQ-g1JUtKaPNus_QWprxZMsLqJSnB6DO0oLIVlejEz-doQQgjVSN4d4xOUtoQUktOmhfomEspaMfpAtlz2MMQtmOhwsHhVczeeeP1gK-nDMPg1zAZwJ-DhSFhFyK-DSHf4S-7sYfopzXWk8XnkMFkH6b3eIW_36cMo87e4G-w9_D7JTpyekjw6qGeoh-XF7dnn6qbr1fXZ6ubytSU56p21DpKZE-dkKakrm9NC4S3pC1PunJ-S_SM0K0UrqHaMEqc1KzXuraGn6KPB97trh_BmvJT1IPaRj_qeK-C9urfzuTv1DrsFaWi4bQhheHtA0MMv3aQshp9MkUGPUHYJVXkE51knM3Q-gA1MaQUwT3toUTNDqmNOjikZocUKcFoGXvz941PQ4-WFMCHA6DoPasXVTJ-9sD6WDRWNvj_b_gDJe2lrw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Maganur, Prabhadevi C.</creator><creator>Vishwanathaiah, Satish</creator><creator>Mashyakhy, Mohammed</creator><creator>Abumelha, Abdulaziz S.</creator><creator>Robaian, Ali</creator><creator>Almohareb, Thamer</creator><creator>Almutairi, Basil</creator><creator>Alzahrani, Khaled M.</creator><creator>Binalrimal, Sultan</creator><creator>Marwah, Nikhil</creator><creator>Khanagar, Sanjeev B.</creator><creator>Manoharan, Varsha</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8376-297X</orcidid><orcidid>https://orcid.org/0009-0007-1604-1332</orcidid><orcidid>https://orcid.org/0000-0001-6273-0357</orcidid><orcidid>https://orcid.org/0000-0002-8234-8929</orcidid><orcidid>https://orcid.org/0000-0003-4012-6591</orcidid><orcidid>https://orcid.org/0000-0002-5753-6725</orcidid></search><sort><creationdate>20241001</creationdate><title>Development of Artificial Intelligence Models for Tooth Numbering and Detection: A Systematic Review</title><author>Maganur, Prabhadevi C. ; Vishwanathaiah, Satish ; Mashyakhy, Mohammed ; Abumelha, Abdulaziz S. ; Robaian, Ali ; Almohareb, Thamer ; Almutairi, Basil ; Alzahrani, Khaled M. ; Binalrimal, Sultan ; Marwah, Nikhil ; Khanagar, Sanjeev B. ; Manoharan, Varsha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-4f1df108b1f58c1f59b7c7e03707202f04870af108a785f61ac210f8a2baa4dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>CNN</topic><topic>Concise Review</topic><topic>Cone-Beam Computed Tomography</topic><topic>Humans</topic><topic>Radiographic images</topic><topic>Radiography, Dental - methods</topic><topic>Tooth - diagnostic imaging</topic><topic>Tooth detection</topic><topic>Tooth numbering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maganur, Prabhadevi C.</creatorcontrib><creatorcontrib>Vishwanathaiah, Satish</creatorcontrib><creatorcontrib>Mashyakhy, Mohammed</creatorcontrib><creatorcontrib>Abumelha, Abdulaziz S.</creatorcontrib><creatorcontrib>Robaian, Ali</creatorcontrib><creatorcontrib>Almohareb, Thamer</creatorcontrib><creatorcontrib>Almutairi, Basil</creatorcontrib><creatorcontrib>Alzahrani, Khaled M.</creatorcontrib><creatorcontrib>Binalrimal, Sultan</creatorcontrib><creatorcontrib>Marwah, Nikhil</creatorcontrib><creatorcontrib>Khanagar, Sanjeev B.</creatorcontrib><creatorcontrib>Manoharan, Varsha</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International dental journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maganur, Prabhadevi C.</au><au>Vishwanathaiah, Satish</au><au>Mashyakhy, Mohammed</au><au>Abumelha, Abdulaziz S.</au><au>Robaian, Ali</au><au>Almohareb, Thamer</au><au>Almutairi, Basil</au><au>Alzahrani, Khaled M.</au><au>Binalrimal, Sultan</au><au>Marwah, Nikhil</au><au>Khanagar, Sanjeev B.</au><au>Manoharan, Varsha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Artificial Intelligence Models for Tooth Numbering and Detection: A Systematic Review</atitle><jtitle>International dental journal</jtitle><addtitle>Int Dent J</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>74</volume><issue>5</issue><spage>917</spage><epage>929</epage><pages>917-929</pages><issn>0020-6539</issn><issn>1875-595X</issn><eissn>1875-595X</eissn><abstract>Dental radiography is widely used in dental practices and offers a valuable resource for the development of AI technology. Consequently, many researchers have been drawn to explore its application in different areas. The current systematic review was undertaken to critically appraise developments and performance of artificial intelligence (AI) models designed for tooth numbering and detection using dento-maxillofacial radiographic images. In order to maintain the integrity of their methodology, the authors of this systematic review followed the diagnostic test accuracy criteria outlined in PRISMA-DTA. Electronic search was done by navigating through various databases such as PubMed, Scopus, Embase, Cochrane, Web of Science, Google Scholar, and the Saudi Digital Library for the articles published from 2018 to 2023. Sixteen articles that met the inclusion exclusion criteria were subjected to risk of bias assessment using QUADAS-2 and certainty of evidence was assessed using GRADE approach.AI technology has been mainly applied for automated tooth detection and numbering, to detect teeth in CBCT images, to identify dental treatment patterns and approaches. The AI models utilised in the studies included exhibited a highest precision of 99.4% for tooth detection and 98% for tooth numbering. The use of AI as a supplementary diagnostic tool in the field of dental radiology holds great potential.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>38851931</pmid><doi>10.1016/j.identj.2024.04.021</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8376-297X</orcidid><orcidid>https://orcid.org/0009-0007-1604-1332</orcidid><orcidid>https://orcid.org/0000-0001-6273-0357</orcidid><orcidid>https://orcid.org/0000-0002-8234-8929</orcidid><orcidid>https://orcid.org/0000-0003-4012-6591</orcidid><orcidid>https://orcid.org/0000-0002-5753-6725</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-6539 |
ispartof | International dental journal, 2024-10, Vol.74 (5), p.917-929 |
issn | 0020-6539 1875-595X 1875-595X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11563160 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Artificial Intelligence CNN Concise Review Cone-Beam Computed Tomography Humans Radiographic images Radiography, Dental - methods Tooth - diagnostic imaging Tooth detection Tooth numbering |
title | Development of Artificial Intelligence Models for Tooth Numbering and Detection: A Systematic Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Artificial%20Intelligence%20Models%20for%20Tooth%20Numbering%20and%20Detection:%20A%20Systematic%20Review&rft.jtitle=International%20dental%20journal&rft.au=Maganur,%20Prabhadevi%20C.&rft.date=2024-10-01&rft.volume=74&rft.issue=5&rft.spage=917&rft.epage=929&rft.pages=917-929&rft.issn=0020-6539&rft.eissn=1875-595X&rft_id=info:doi/10.1016/j.identj.2024.04.021&rft_dat=%3Cproquest_pubme%3E3065982320%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065982320&rft_id=info:pmid/38851931&rft_els_id=S002065392400128X&rfr_iscdi=true |