Development of Artificial Intelligence Models for Tooth Numbering and Detection: A Systematic Review

Dental radiography is widely used in dental practices and offers a valuable resource for the development of AI technology. Consequently, many researchers have been drawn to explore its application in different areas. The current systematic review was undertaken to critically appraise developments an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International dental journal 2024-10, Vol.74 (5), p.917-929
Hauptverfasser: Maganur, Prabhadevi C., Vishwanathaiah, Satish, Mashyakhy, Mohammed, Abumelha, Abdulaziz S., Robaian, Ali, Almohareb, Thamer, Almutairi, Basil, Alzahrani, Khaled M., Binalrimal, Sultan, Marwah, Nikhil, Khanagar, Sanjeev B., Manoharan, Varsha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 929
container_issue 5
container_start_page 917
container_title International dental journal
container_volume 74
creator Maganur, Prabhadevi C.
Vishwanathaiah, Satish
Mashyakhy, Mohammed
Abumelha, Abdulaziz S.
Robaian, Ali
Almohareb, Thamer
Almutairi, Basil
Alzahrani, Khaled M.
Binalrimal, Sultan
Marwah, Nikhil
Khanagar, Sanjeev B.
Manoharan, Varsha
description Dental radiography is widely used in dental practices and offers a valuable resource for the development of AI technology. Consequently, many researchers have been drawn to explore its application in different areas. The current systematic review was undertaken to critically appraise developments and performance of artificial intelligence (AI) models designed for tooth numbering and detection using dento-maxillofacial radiographic images. In order to maintain the integrity of their methodology, the authors of this systematic review followed the diagnostic test accuracy criteria outlined in PRISMA-DTA. Electronic search was done by navigating through various databases such as PubMed, Scopus, Embase, Cochrane, Web of Science, Google Scholar, and the Saudi Digital Library for the articles published from 2018 to 2023. Sixteen articles that met the inclusion exclusion criteria were subjected to risk of bias assessment using QUADAS-2 and certainty of evidence was assessed using GRADE approach.AI technology has been mainly applied for automated tooth detection and numbering, to detect teeth in CBCT images, to identify dental treatment patterns and approaches. The AI models utilised in the studies included exhibited a highest precision of 99.4% for tooth detection and 98% for tooth numbering. The use of AI as a supplementary diagnostic tool in the field of dental radiology holds great potential.
doi_str_mv 10.1016/j.identj.2024.04.021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11563160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002065392400128X</els_id><sourcerecordid>3065982320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-4f1df108b1f58c1f59b7c7e03707202f04870af108a785f61ac210f8a2baa4dc3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRAV3Rb-AUI-csnijzhxOIBW_aJSAQmKxM1y7PHWqyRebO-i_nscbVvBBWk0c5g3b2beQ-g1JUtKaPNus_QWprxZMsLqJSnB6DO0oLIVlejEz-doQQgjVSN4d4xOUtoQUktOmhfomEspaMfpAtlz2MMQtmOhwsHhVczeeeP1gK-nDMPg1zAZwJ-DhSFhFyK-DSHf4S-7sYfopzXWk8XnkMFkH6b3eIW_36cMo87e4G-w9_D7JTpyekjw6qGeoh-XF7dnn6qbr1fXZ6ubytSU56p21DpKZE-dkKakrm9NC4S3pC1PunJ-S_SM0K0UrqHaMEqc1KzXuraGn6KPB97trh_BmvJT1IPaRj_qeK-C9urfzuTv1DrsFaWi4bQhheHtA0MMv3aQshp9MkUGPUHYJVXkE51knM3Q-gA1MaQUwT3toUTNDqmNOjikZocUKcFoGXvz941PQ4-WFMCHA6DoPasXVTJ-9sD6WDRWNvj_b_gDJe2lrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065982320</pqid></control><display><type>article</type><title>Development of Artificial Intelligence Models for Tooth Numbering and Detection: A Systematic Review</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Maganur, Prabhadevi C. ; Vishwanathaiah, Satish ; Mashyakhy, Mohammed ; Abumelha, Abdulaziz S. ; Robaian, Ali ; Almohareb, Thamer ; Almutairi, Basil ; Alzahrani, Khaled M. ; Binalrimal, Sultan ; Marwah, Nikhil ; Khanagar, Sanjeev B. ; Manoharan, Varsha</creator><creatorcontrib>Maganur, Prabhadevi C. ; Vishwanathaiah, Satish ; Mashyakhy, Mohammed ; Abumelha, Abdulaziz S. ; Robaian, Ali ; Almohareb, Thamer ; Almutairi, Basil ; Alzahrani, Khaled M. ; Binalrimal, Sultan ; Marwah, Nikhil ; Khanagar, Sanjeev B. ; Manoharan, Varsha</creatorcontrib><description>Dental radiography is widely used in dental practices and offers a valuable resource for the development of AI technology. Consequently, many researchers have been drawn to explore its application in different areas. The current systematic review was undertaken to critically appraise developments and performance of artificial intelligence (AI) models designed for tooth numbering and detection using dento-maxillofacial radiographic images. In order to maintain the integrity of their methodology, the authors of this systematic review followed the diagnostic test accuracy criteria outlined in PRISMA-DTA. Electronic search was done by navigating through various databases such as PubMed, Scopus, Embase, Cochrane, Web of Science, Google Scholar, and the Saudi Digital Library for the articles published from 2018 to 2023. Sixteen articles that met the inclusion exclusion criteria were subjected to risk of bias assessment using QUADAS-2 and certainty of evidence was assessed using GRADE approach.AI technology has been mainly applied for automated tooth detection and numbering, to detect teeth in CBCT images, to identify dental treatment patterns and approaches. The AI models utilised in the studies included exhibited a highest precision of 99.4% for tooth detection and 98% for tooth numbering. The use of AI as a supplementary diagnostic tool in the field of dental radiology holds great potential.</description><identifier>ISSN: 0020-6539</identifier><identifier>ISSN: 1875-595X</identifier><identifier>EISSN: 1875-595X</identifier><identifier>DOI: 10.1016/j.identj.2024.04.021</identifier><identifier>PMID: 38851931</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Artificial Intelligence ; CNN ; Concise Review ; Cone-Beam Computed Tomography ; Humans ; Radiographic images ; Radiography, Dental - methods ; Tooth - diagnostic imaging ; Tooth detection ; Tooth numbering</subject><ispartof>International dental journal, 2024-10, Vol.74 (5), p.917-929</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c413t-4f1df108b1f58c1f59b7c7e03707202f04870af108a785f61ac210f8a2baa4dc3</cites><orcidid>0000-0002-8376-297X ; 0009-0007-1604-1332 ; 0000-0001-6273-0357 ; 0000-0002-8234-8929 ; 0000-0003-4012-6591 ; 0000-0002-5753-6725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563160/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563160/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38851931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maganur, Prabhadevi C.</creatorcontrib><creatorcontrib>Vishwanathaiah, Satish</creatorcontrib><creatorcontrib>Mashyakhy, Mohammed</creatorcontrib><creatorcontrib>Abumelha, Abdulaziz S.</creatorcontrib><creatorcontrib>Robaian, Ali</creatorcontrib><creatorcontrib>Almohareb, Thamer</creatorcontrib><creatorcontrib>Almutairi, Basil</creatorcontrib><creatorcontrib>Alzahrani, Khaled M.</creatorcontrib><creatorcontrib>Binalrimal, Sultan</creatorcontrib><creatorcontrib>Marwah, Nikhil</creatorcontrib><creatorcontrib>Khanagar, Sanjeev B.</creatorcontrib><creatorcontrib>Manoharan, Varsha</creatorcontrib><title>Development of Artificial Intelligence Models for Tooth Numbering and Detection: A Systematic Review</title><title>International dental journal</title><addtitle>Int Dent J</addtitle><description>Dental radiography is widely used in dental practices and offers a valuable resource for the development of AI technology. Consequently, many researchers have been drawn to explore its application in different areas. The current systematic review was undertaken to critically appraise developments and performance of artificial intelligence (AI) models designed for tooth numbering and detection using dento-maxillofacial radiographic images. In order to maintain the integrity of their methodology, the authors of this systematic review followed the diagnostic test accuracy criteria outlined in PRISMA-DTA. Electronic search was done by navigating through various databases such as PubMed, Scopus, Embase, Cochrane, Web of Science, Google Scholar, and the Saudi Digital Library for the articles published from 2018 to 2023. Sixteen articles that met the inclusion exclusion criteria were subjected to risk of bias assessment using QUADAS-2 and certainty of evidence was assessed using GRADE approach.AI technology has been mainly applied for automated tooth detection and numbering, to detect teeth in CBCT images, to identify dental treatment patterns and approaches. The AI models utilised in the studies included exhibited a highest precision of 99.4% for tooth detection and 98% for tooth numbering. The use of AI as a supplementary diagnostic tool in the field of dental radiology holds great potential.</description><subject>Artificial Intelligence</subject><subject>CNN</subject><subject>Concise Review</subject><subject>Cone-Beam Computed Tomography</subject><subject>Humans</subject><subject>Radiographic images</subject><subject>Radiography, Dental - methods</subject><subject>Tooth - diagnostic imaging</subject><subject>Tooth detection</subject><subject>Tooth numbering</subject><issn>0020-6539</issn><issn>1875-595X</issn><issn>1875-595X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQtRAV3Rb-AUI-csnijzhxOIBW_aJSAQmKxM1y7PHWqyRebO-i_nscbVvBBWk0c5g3b2beQ-g1JUtKaPNus_QWprxZMsLqJSnB6DO0oLIVlejEz-doQQgjVSN4d4xOUtoQUktOmhfomEspaMfpAtlz2MMQtmOhwsHhVczeeeP1gK-nDMPg1zAZwJ-DhSFhFyK-DSHf4S-7sYfopzXWk8XnkMFkH6b3eIW_36cMo87e4G-w9_D7JTpyekjw6qGeoh-XF7dnn6qbr1fXZ6ubytSU56p21DpKZE-dkKakrm9NC4S3pC1PunJ-S_SM0K0UrqHaMEqc1KzXuraGn6KPB97trh_BmvJT1IPaRj_qeK-C9urfzuTv1DrsFaWi4bQhheHtA0MMv3aQshp9MkUGPUHYJVXkE51knM3Q-gA1MaQUwT3toUTNDqmNOjikZocUKcFoGXvz941PQ4-WFMCHA6DoPasXVTJ-9sD6WDRWNvj_b_gDJe2lrw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Maganur, Prabhadevi C.</creator><creator>Vishwanathaiah, Satish</creator><creator>Mashyakhy, Mohammed</creator><creator>Abumelha, Abdulaziz S.</creator><creator>Robaian, Ali</creator><creator>Almohareb, Thamer</creator><creator>Almutairi, Basil</creator><creator>Alzahrani, Khaled M.</creator><creator>Binalrimal, Sultan</creator><creator>Marwah, Nikhil</creator><creator>Khanagar, Sanjeev B.</creator><creator>Manoharan, Varsha</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8376-297X</orcidid><orcidid>https://orcid.org/0009-0007-1604-1332</orcidid><orcidid>https://orcid.org/0000-0001-6273-0357</orcidid><orcidid>https://orcid.org/0000-0002-8234-8929</orcidid><orcidid>https://orcid.org/0000-0003-4012-6591</orcidid><orcidid>https://orcid.org/0000-0002-5753-6725</orcidid></search><sort><creationdate>20241001</creationdate><title>Development of Artificial Intelligence Models for Tooth Numbering and Detection: A Systematic Review</title><author>Maganur, Prabhadevi C. ; Vishwanathaiah, Satish ; Mashyakhy, Mohammed ; Abumelha, Abdulaziz S. ; Robaian, Ali ; Almohareb, Thamer ; Almutairi, Basil ; Alzahrani, Khaled M. ; Binalrimal, Sultan ; Marwah, Nikhil ; Khanagar, Sanjeev B. ; Manoharan, Varsha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-4f1df108b1f58c1f59b7c7e03707202f04870af108a785f61ac210f8a2baa4dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>CNN</topic><topic>Concise Review</topic><topic>Cone-Beam Computed Tomography</topic><topic>Humans</topic><topic>Radiographic images</topic><topic>Radiography, Dental - methods</topic><topic>Tooth - diagnostic imaging</topic><topic>Tooth detection</topic><topic>Tooth numbering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maganur, Prabhadevi C.</creatorcontrib><creatorcontrib>Vishwanathaiah, Satish</creatorcontrib><creatorcontrib>Mashyakhy, Mohammed</creatorcontrib><creatorcontrib>Abumelha, Abdulaziz S.</creatorcontrib><creatorcontrib>Robaian, Ali</creatorcontrib><creatorcontrib>Almohareb, Thamer</creatorcontrib><creatorcontrib>Almutairi, Basil</creatorcontrib><creatorcontrib>Alzahrani, Khaled M.</creatorcontrib><creatorcontrib>Binalrimal, Sultan</creatorcontrib><creatorcontrib>Marwah, Nikhil</creatorcontrib><creatorcontrib>Khanagar, Sanjeev B.</creatorcontrib><creatorcontrib>Manoharan, Varsha</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International dental journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maganur, Prabhadevi C.</au><au>Vishwanathaiah, Satish</au><au>Mashyakhy, Mohammed</au><au>Abumelha, Abdulaziz S.</au><au>Robaian, Ali</au><au>Almohareb, Thamer</au><au>Almutairi, Basil</au><au>Alzahrani, Khaled M.</au><au>Binalrimal, Sultan</au><au>Marwah, Nikhil</au><au>Khanagar, Sanjeev B.</au><au>Manoharan, Varsha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Artificial Intelligence Models for Tooth Numbering and Detection: A Systematic Review</atitle><jtitle>International dental journal</jtitle><addtitle>Int Dent J</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>74</volume><issue>5</issue><spage>917</spage><epage>929</epage><pages>917-929</pages><issn>0020-6539</issn><issn>1875-595X</issn><eissn>1875-595X</eissn><abstract>Dental radiography is widely used in dental practices and offers a valuable resource for the development of AI technology. Consequently, many researchers have been drawn to explore its application in different areas. The current systematic review was undertaken to critically appraise developments and performance of artificial intelligence (AI) models designed for tooth numbering and detection using dento-maxillofacial radiographic images. In order to maintain the integrity of their methodology, the authors of this systematic review followed the diagnostic test accuracy criteria outlined in PRISMA-DTA. Electronic search was done by navigating through various databases such as PubMed, Scopus, Embase, Cochrane, Web of Science, Google Scholar, and the Saudi Digital Library for the articles published from 2018 to 2023. Sixteen articles that met the inclusion exclusion criteria were subjected to risk of bias assessment using QUADAS-2 and certainty of evidence was assessed using GRADE approach.AI technology has been mainly applied for automated tooth detection and numbering, to detect teeth in CBCT images, to identify dental treatment patterns and approaches. The AI models utilised in the studies included exhibited a highest precision of 99.4% for tooth detection and 98% for tooth numbering. The use of AI as a supplementary diagnostic tool in the field of dental radiology holds great potential.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>38851931</pmid><doi>10.1016/j.identj.2024.04.021</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8376-297X</orcidid><orcidid>https://orcid.org/0009-0007-1604-1332</orcidid><orcidid>https://orcid.org/0000-0001-6273-0357</orcidid><orcidid>https://orcid.org/0000-0002-8234-8929</orcidid><orcidid>https://orcid.org/0000-0003-4012-6591</orcidid><orcidid>https://orcid.org/0000-0002-5753-6725</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-6539
ispartof International dental journal, 2024-10, Vol.74 (5), p.917-929
issn 0020-6539
1875-595X
1875-595X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11563160
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Artificial Intelligence
CNN
Concise Review
Cone-Beam Computed Tomography
Humans
Radiographic images
Radiography, Dental - methods
Tooth - diagnostic imaging
Tooth detection
Tooth numbering
title Development of Artificial Intelligence Models for Tooth Numbering and Detection: A Systematic Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Artificial%20Intelligence%20Models%20for%20Tooth%20Numbering%20and%20Detection:%20A%20Systematic%20Review&rft.jtitle=International%20dental%20journal&rft.au=Maganur,%20Prabhadevi%20C.&rft.date=2024-10-01&rft.volume=74&rft.issue=5&rft.spage=917&rft.epage=929&rft.pages=917-929&rft.issn=0020-6539&rft.eissn=1875-595X&rft_id=info:doi/10.1016/j.identj.2024.04.021&rft_dat=%3Cproquest_pubme%3E3065982320%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065982320&rft_id=info:pmid/38851931&rft_els_id=S002065392400128X&rfr_iscdi=true