Screening Environmentally Benign Ionic Liquids for CO2 Absorption Using Representation Uncertainty-Based Machine Learning

Screening ionic liquids (ILs) with low viscosity, low toxicity, and high CO2 absorption using machine learning (ML) models is crucial for mitigating global warming. However, when candidate ILs fall into the extrapolation zone of ML models, predictions may become unreliable, leading to poor decision-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology letters 2024-09, Vol.11 (11), p.1193-1199
Hauptverfasser: Zhong, Shifa, Chen, Yushan, Li, Jibai, Igou, Thomas, Xiong, Anyue, Guan, Jian, Dai, Zhenhua, Cai, Xuanying, Qu, Xintong, Chen, Yongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1199
container_issue 11
container_start_page 1193
container_title Environmental science & technology letters
container_volume 11
creator Zhong, Shifa
Chen, Yushan
Li, Jibai
Igou, Thomas
Xiong, Anyue
Guan, Jian
Dai, Zhenhua
Cai, Xuanying
Qu, Xintong
Chen, Yongsheng
description Screening ionic liquids (ILs) with low viscosity, low toxicity, and high CO2 absorption using machine learning (ML) models is crucial for mitigating global warming. However, when candidate ILs fall into the extrapolation zone of ML models, predictions may become unreliable, leading to poor decision-making. In this study, we introduce a “representation uncertainty” (RU) approach to quantify prediction uncertainty by employing four IL representations: molecular fingerprint, molecular descriptor, molecular image, and molecular graph. We develop four types of ML models based on these representations and calculate RU as the standard deviation of predictions across these models. Compared to traditional model uncertainty (MU), which is based on hyperparameter variations within a single representation, RU outperforms MU in identifying unreliable predictions across four IL property data sets: viscosity, toxicity, refractive index, and CO2 absorption capacity. Furthermore, we develop ensemble models from the four types of models, which show superior predictive performance compared with that of individual models. Using the RU approach, we screened 1420 ILs and identified 37 promising candidates with low viscosity, low toxicity, and high CO2 absorption capacity. The predictive performance of our ensemble model, along with the effectiveness of the RU-based approach, was experimentally validated by testing the CO2 absorption capacity of 14 ILs. This study not only offers a more reliable method for screening and designing ILs, accelerating the discovery process, but also introduces a new perspective on developing ensemble models with enhanced predictive performance.
doi_str_mv 10.1021/acs.estlett.4c00524
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11562734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154181428</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-4479fcc9b1309ca7f2fc994681daf23e7fcd85cc1a9dec559e8523c011408bfd3</originalsourceid><addsrcrecordid>eNqNUU1PwzAMrRBITMAv4JIjl458dU1OaJv4mDSExMc5ylx3ZOqSkbRI-_e02g5wwxdbz8_Pll-WXTM6ZpSzWwtpjKltsG3HEigtuDzJRlxwlSst6Omv-jy7SmlD-9AllVSMsv0bRETv_Jrc-28Xg9-ib23T7Mmsh9eeLIJ3QJbuq3NVInWIZP7CyXSVQty1LnjykYbpV9xFTMPsAfSAsbXOt_t8ZhNW5NnCp_NIlmjjsO8yO6ttk_DqmC-yj4f79_lTvnx5XMyny9xyzdtcylLXAHrFBNVgy5rXoLWcKFbZmgssa6hUAcCsrhCKQqMquADKmKRqVVfiIrs76O661RYr6E-MtjG76LY27k2wzvztePdp1uHbMFZMeClkr3BzVIjhq-tfbbYuATaN9Ri6ZAQrJFNMcvUPKtcTpSda9NTbA7X3z2xCF33_BcOoGUw1A3g01RxNFT_HMpuW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129689693</pqid></control><display><type>article</type><title>Screening Environmentally Benign Ionic Liquids for CO2 Absorption Using Representation Uncertainty-Based Machine Learning</title><source>American Chemical Society Journals</source><creator>Zhong, Shifa ; Chen, Yushan ; Li, Jibai ; Igou, Thomas ; Xiong, Anyue ; Guan, Jian ; Dai, Zhenhua ; Cai, Xuanying ; Qu, Xintong ; Chen, Yongsheng</creator><creatorcontrib>Zhong, Shifa ; Chen, Yushan ; Li, Jibai ; Igou, Thomas ; Xiong, Anyue ; Guan, Jian ; Dai, Zhenhua ; Cai, Xuanying ; Qu, Xintong ; Chen, Yongsheng</creatorcontrib><description>Screening ionic liquids (ILs) with low viscosity, low toxicity, and high CO2 absorption using machine learning (ML) models is crucial for mitigating global warming. However, when candidate ILs fall into the extrapolation zone of ML models, predictions may become unreliable, leading to poor decision-making. In this study, we introduce a “representation uncertainty” (RU) approach to quantify prediction uncertainty by employing four IL representations: molecular fingerprint, molecular descriptor, molecular image, and molecular graph. We develop four types of ML models based on these representations and calculate RU as the standard deviation of predictions across these models. Compared to traditional model uncertainty (MU), which is based on hyperparameter variations within a single representation, RU outperforms MU in identifying unreliable predictions across four IL property data sets: viscosity, toxicity, refractive index, and CO2 absorption capacity. Furthermore, we develop ensemble models from the four types of models, which show superior predictive performance compared with that of individual models. Using the RU approach, we screened 1420 ILs and identified 37 promising candidates with low viscosity, low toxicity, and high CO2 absorption capacity. The predictive performance of our ensemble model, along with the effectiveness of the RU-based approach, was experimentally validated by testing the CO2 absorption capacity of 14 ILs. This study not only offers a more reliable method for screening and designing ILs, accelerating the discovery process, but also introduces a new perspective on developing ensemble models with enhanced predictive performance.</description><identifier>ISSN: 2328-8930</identifier><identifier>EISSN: 2328-8930</identifier><identifier>DOI: 10.1021/acs.estlett.4c00524</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>absorption ; carbon dioxide ; Data Science ; decision making ; environmental science ; model uncertainty ; prediction ; refractive index ; standard deviation ; technology ; toxicity ; viscosity</subject><ispartof>Environmental science &amp; technology letters, 2024-09, Vol.11 (11), p.1193-1199</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society.</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5822-0837 ; 0000-0002-9519-2302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.estlett.4c00524$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.estlett.4c00524$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zhong, Shifa</creatorcontrib><creatorcontrib>Chen, Yushan</creatorcontrib><creatorcontrib>Li, Jibai</creatorcontrib><creatorcontrib>Igou, Thomas</creatorcontrib><creatorcontrib>Xiong, Anyue</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Dai, Zhenhua</creatorcontrib><creatorcontrib>Cai, Xuanying</creatorcontrib><creatorcontrib>Qu, Xintong</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><title>Screening Environmentally Benign Ionic Liquids for CO2 Absorption Using Representation Uncertainty-Based Machine Learning</title><title>Environmental science &amp; technology letters</title><addtitle>Environ. Sci. Technol. Lett</addtitle><description>Screening ionic liquids (ILs) with low viscosity, low toxicity, and high CO2 absorption using machine learning (ML) models is crucial for mitigating global warming. However, when candidate ILs fall into the extrapolation zone of ML models, predictions may become unreliable, leading to poor decision-making. In this study, we introduce a “representation uncertainty” (RU) approach to quantify prediction uncertainty by employing four IL representations: molecular fingerprint, molecular descriptor, molecular image, and molecular graph. We develop four types of ML models based on these representations and calculate RU as the standard deviation of predictions across these models. Compared to traditional model uncertainty (MU), which is based on hyperparameter variations within a single representation, RU outperforms MU in identifying unreliable predictions across four IL property data sets: viscosity, toxicity, refractive index, and CO2 absorption capacity. Furthermore, we develop ensemble models from the four types of models, which show superior predictive performance compared with that of individual models. Using the RU approach, we screened 1420 ILs and identified 37 promising candidates with low viscosity, low toxicity, and high CO2 absorption capacity. The predictive performance of our ensemble model, along with the effectiveness of the RU-based approach, was experimentally validated by testing the CO2 absorption capacity of 14 ILs. This study not only offers a more reliable method for screening and designing ILs, accelerating the discovery process, but also introduces a new perspective on developing ensemble models with enhanced predictive performance.</description><subject>absorption</subject><subject>carbon dioxide</subject><subject>Data Science</subject><subject>decision making</subject><subject>environmental science</subject><subject>model uncertainty</subject><subject>prediction</subject><subject>refractive index</subject><subject>standard deviation</subject><subject>technology</subject><subject>toxicity</subject><subject>viscosity</subject><issn>2328-8930</issn><issn>2328-8930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNUU1PwzAMrRBITMAv4JIjl458dU1OaJv4mDSExMc5ylx3ZOqSkbRI-_e02g5wwxdbz8_Pll-WXTM6ZpSzWwtpjKltsG3HEigtuDzJRlxwlSst6Omv-jy7SmlD-9AllVSMsv0bRETv_Jrc-28Xg9-ib23T7Mmsh9eeLIJ3QJbuq3NVInWIZP7CyXSVQty1LnjykYbpV9xFTMPsAfSAsbXOt_t8ZhNW5NnCp_NIlmjjsO8yO6ttk_DqmC-yj4f79_lTvnx5XMyny9xyzdtcylLXAHrFBNVgy5rXoLWcKFbZmgssa6hUAcCsrhCKQqMquADKmKRqVVfiIrs76O661RYr6E-MtjG76LY27k2wzvztePdp1uHbMFZMeClkr3BzVIjhq-tfbbYuATaN9Ri6ZAQrJFNMcvUPKtcTpSda9NTbA7X3z2xCF33_BcOoGUw1A3g01RxNFT_HMpuW</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Zhong, Shifa</creator><creator>Chen, Yushan</creator><creator>Li, Jibai</creator><creator>Igou, Thomas</creator><creator>Xiong, Anyue</creator><creator>Guan, Jian</creator><creator>Dai, Zhenhua</creator><creator>Cai, Xuanying</creator><creator>Qu, Xintong</creator><creator>Chen, Yongsheng</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5822-0837</orcidid><orcidid>https://orcid.org/0000-0002-9519-2302</orcidid></search><sort><creationdate>20240910</creationdate><title>Screening Environmentally Benign Ionic Liquids for CO2 Absorption Using Representation Uncertainty-Based Machine Learning</title><author>Zhong, Shifa ; Chen, Yushan ; Li, Jibai ; Igou, Thomas ; Xiong, Anyue ; Guan, Jian ; Dai, Zhenhua ; Cai, Xuanying ; Qu, Xintong ; Chen, Yongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-4479fcc9b1309ca7f2fc994681daf23e7fcd85cc1a9dec559e8523c011408bfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>absorption</topic><topic>carbon dioxide</topic><topic>Data Science</topic><topic>decision making</topic><topic>environmental science</topic><topic>model uncertainty</topic><topic>prediction</topic><topic>refractive index</topic><topic>standard deviation</topic><topic>technology</topic><topic>toxicity</topic><topic>viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Shifa</creatorcontrib><creatorcontrib>Chen, Yushan</creatorcontrib><creatorcontrib>Li, Jibai</creatorcontrib><creatorcontrib>Igou, Thomas</creatorcontrib><creatorcontrib>Xiong, Anyue</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Dai, Zhenhua</creatorcontrib><creatorcontrib>Cai, Xuanying</creatorcontrib><creatorcontrib>Qu, Xintong</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Shifa</au><au>Chen, Yushan</au><au>Li, Jibai</au><au>Igou, Thomas</au><au>Xiong, Anyue</au><au>Guan, Jian</au><au>Dai, Zhenhua</au><au>Cai, Xuanying</au><au>Qu, Xintong</au><au>Chen, Yongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening Environmentally Benign Ionic Liquids for CO2 Absorption Using Representation Uncertainty-Based Machine Learning</atitle><jtitle>Environmental science &amp; technology letters</jtitle><addtitle>Environ. Sci. Technol. Lett</addtitle><date>2024-09-10</date><risdate>2024</risdate><volume>11</volume><issue>11</issue><spage>1193</spage><epage>1199</epage><pages>1193-1199</pages><issn>2328-8930</issn><eissn>2328-8930</eissn><abstract>Screening ionic liquids (ILs) with low viscosity, low toxicity, and high CO2 absorption using machine learning (ML) models is crucial for mitigating global warming. However, when candidate ILs fall into the extrapolation zone of ML models, predictions may become unreliable, leading to poor decision-making. In this study, we introduce a “representation uncertainty” (RU) approach to quantify prediction uncertainty by employing four IL representations: molecular fingerprint, molecular descriptor, molecular image, and molecular graph. We develop four types of ML models based on these representations and calculate RU as the standard deviation of predictions across these models. Compared to traditional model uncertainty (MU), which is based on hyperparameter variations within a single representation, RU outperforms MU in identifying unreliable predictions across four IL property data sets: viscosity, toxicity, refractive index, and CO2 absorption capacity. Furthermore, we develop ensemble models from the four types of models, which show superior predictive performance compared with that of individual models. Using the RU approach, we screened 1420 ILs and identified 37 promising candidates with low viscosity, low toxicity, and high CO2 absorption capacity. The predictive performance of our ensemble model, along with the effectiveness of the RU-based approach, was experimentally validated by testing the CO2 absorption capacity of 14 ILs. This study not only offers a more reliable method for screening and designing ILs, accelerating the discovery process, but also introduces a new perspective on developing ensemble models with enhanced predictive performance.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.estlett.4c00524</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5822-0837</orcidid><orcidid>https://orcid.org/0000-0002-9519-2302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2328-8930
ispartof Environmental science & technology letters, 2024-09, Vol.11 (11), p.1193-1199
issn 2328-8930
2328-8930
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11562734
source American Chemical Society Journals
subjects absorption
carbon dioxide
Data Science
decision making
environmental science
model uncertainty
prediction
refractive index
standard deviation
technology
toxicity
viscosity
title Screening Environmentally Benign Ionic Liquids for CO2 Absorption Using Representation Uncertainty-Based Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20Environmentally%20Benign%20Ionic%20Liquids%20for%20CO2%20Absorption%20Using%20Representation%20Uncertainty-Based%20Machine%20Learning&rft.jtitle=Environmental%20science%20&%20technology%20letters&rft.au=Zhong,%20Shifa&rft.date=2024-09-10&rft.volume=11&rft.issue=11&rft.spage=1193&rft.epage=1199&rft.pages=1193-1199&rft.issn=2328-8930&rft.eissn=2328-8930&rft_id=info:doi/10.1021/acs.estlett.4c00524&rft_dat=%3Cproquest_pubme%3E3154181428%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129689693&rft_id=info:pmid/&rfr_iscdi=true