Inducing novel endosymbioses by implanting bacteria in fungi

Endosymbioses have profoundly impacted the evolution of life and continue to shape the ecology of a wide range of species. They give rise to new combinations of biochemical capabilities that promote innovation and diversification 1 , 2 . Despite the many examples of known endosymbioses across the tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-11, Vol.635 (8038), p.415-422
Hauptverfasser: Giger, Gabriel H., Ernst, Chantal, Richter, Ingrid, Gassler, Thomas, Field, Christopher M., Sintsova, Anna, Kiefer, Patrick, Gäbelein, Christoph G., Guillaume–Gentil, Orane, Scherlach, Kirstin, Bortfeld-Miller, Miriam, Zambelli, Tomaso, Sunagawa, Shinichi, Künzler, Markus, Hertweck, Christian, Vorholt, Julia A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 8038
container_start_page 415
container_title Nature (London)
container_volume 635
creator Giger, Gabriel H.
Ernst, Chantal
Richter, Ingrid
Gassler, Thomas
Field, Christopher M.
Sintsova, Anna
Kiefer, Patrick
Gäbelein, Christoph G.
Guillaume–Gentil, Orane
Scherlach, Kirstin
Bortfeld-Miller, Miriam
Zambelli, Tomaso
Sunagawa, Shinichi
Künzler, Markus
Hertweck, Christian
Vorholt, Julia A.
description Endosymbioses have profoundly impacted the evolution of life and continue to shape the ecology of a wide range of species. They give rise to new combinations of biochemical capabilities that promote innovation and diversification 1 , 2 . Despite the many examples of known endosymbioses across the tree of life, their de novo emergence is rare and challenging to uncover in retrospect 3 – 5 . Here we implant bacteria into the filamentous fungus Rhizopus microsporus to follow the fate of artificially induced endosymbioses. Whereas Escherichia coli implanted into the cytosol induced septum formation, effectively halting endosymbiogenesis, Mycetohabitans rhizoxinica was transmitted vertically to the progeny at a low frequency. Continuous positive selection on endosymbiosis mitigated initial fitness constraints by several orders of magnitude upon adaptive evolution. Phenotypic changes were underscored by the accumulation of mutations in the host as the system stabilized. The bacterium produced rhizoxin congeners in its new host, demonstrating the transfer of a metabolic function through induced endosymbiosis. Single-cell implantation thus provides a powerful experimental approach to study critical events at the onset of endosymbiogenesis and opens opportunities for synthetic approaches towards designing endosymbioses with desired traits. A study presents an approach to establish and track a new endosymbiotic partnership by implanting bacteria in a non-host fungus and shows that stable inheritance of the implanted bacteria is possible with positive selection.
doi_str_mv 10.1038/s41586-024-08010-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11560845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112528006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c2485b25daba9cd89a167ad749ded8e6623dd56c7f87aa9077d4c77b44c414323</originalsourceid><addsrcrecordid>eNp9kUtLJDEUhYOMaPv4Ay6Ggtm4Kc07KRBExBcIbnQdUkm6jVQlPUlVY_9707bvhau7ON899x4OAAcIHiFI5HGmiEleQ0xrKCGC9fMGmCAqeE25FH_ABEIsi0T4NtjJ-QlCyJCgW2CbNIRJhugEnNwEOxofZlWIC9dVLtiYl33rY3a5apeV7-edDsOKaLUZXPK68qGajmHm98DmVHfZ7b_NXfBweXF_fl3f3l3dnJ_d1oYwPtQGU8lazKxudWOsbDTiQltBG-usdJxjYi3jRkyl0LqBQlhqhGgpNRRRgskuOF37zse2d9a4MCTdqXnyvU5LFbVX35XgH9UsLhRCjENJWXE4fHNI8f_o8qB6n43rSjQXx6wIQphhCSEv6L8f6FMcUyj5CkVwwxCXKwqvKZNizslNP75BUK3aUet2VGlHvbajnsvS3685Plbe6ygAWQO5SGHm0uftX2xfAPilm6c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132951686</pqid></control><display><type>article</type><title>Inducing novel endosymbioses by implanting bacteria in fungi</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Giger, Gabriel H. ; Ernst, Chantal ; Richter, Ingrid ; Gassler, Thomas ; Field, Christopher M. ; Sintsova, Anna ; Kiefer, Patrick ; Gäbelein, Christoph G. ; Guillaume–Gentil, Orane ; Scherlach, Kirstin ; Bortfeld-Miller, Miriam ; Zambelli, Tomaso ; Sunagawa, Shinichi ; Künzler, Markus ; Hertweck, Christian ; Vorholt, Julia A.</creator><creatorcontrib>Giger, Gabriel H. ; Ernst, Chantal ; Richter, Ingrid ; Gassler, Thomas ; Field, Christopher M. ; Sintsova, Anna ; Kiefer, Patrick ; Gäbelein, Christoph G. ; Guillaume–Gentil, Orane ; Scherlach, Kirstin ; Bortfeld-Miller, Miriam ; Zambelli, Tomaso ; Sunagawa, Shinichi ; Künzler, Markus ; Hertweck, Christian ; Vorholt, Julia A.</creatorcontrib><description>Endosymbioses have profoundly impacted the evolution of life and continue to shape the ecology of a wide range of species. They give rise to new combinations of biochemical capabilities that promote innovation and diversification 1 , 2 . Despite the many examples of known endosymbioses across the tree of life, their de novo emergence is rare and challenging to uncover in retrospect 3 – 5 . Here we implant bacteria into the filamentous fungus Rhizopus microsporus to follow the fate of artificially induced endosymbioses. Whereas Escherichia coli implanted into the cytosol induced septum formation, effectively halting endosymbiogenesis, Mycetohabitans rhizoxinica was transmitted vertically to the progeny at a low frequency. Continuous positive selection on endosymbiosis mitigated initial fitness constraints by several orders of magnitude upon adaptive evolution. Phenotypic changes were underscored by the accumulation of mutations in the host as the system stabilized. The bacterium produced rhizoxin congeners in its new host, demonstrating the transfer of a metabolic function through induced endosymbiosis. Single-cell implantation thus provides a powerful experimental approach to study critical events at the onset of endosymbiogenesis and opens opportunities for synthetic approaches towards designing endosymbioses with desired traits. A study presents an approach to establish and track a new endosymbiotic partnership by implanting bacteria in a non-host fungus and shows that stable inheritance of the implanted bacteria is possible with positive selection.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-08010-x</identifier><identifier>PMID: 39358514</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 14 ; 14/19 ; 14/3 ; 38 ; 38/23 ; 42 ; 42/35 ; 45 ; 631/158/855 ; 631/326/193/2540 ; 631/326/41/547 ; 82 ; Adaptive systems ; Bacteria ; Biological evolution ; Coliforms ; Congeners ; Cytosol ; Cytosol - metabolism ; Cytosol - microbiology ; E coli ; Escherichia coli - physiology ; Evolution ; Evolution &amp; development ; Fungi ; Genetic Fitness ; Humanities and Social Sciences ; Macrolides - chemistry ; Macrolides - metabolism ; Metabolism ; Microscopy ; multidisciplinary ; Mutation ; New combinations ; Phenotype ; Positive selection ; Rare species ; Rhizopus - cytology ; Rhizopus - physiology ; Science ; Science (multidisciplinary) ; Symbiosis - physiology</subject><ispartof>Nature (London), 2024-11, Vol.635 (8038), p.415-422</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Nov 14, 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-c2485b25daba9cd89a167ad749ded8e6623dd56c7f87aa9077d4c77b44c414323</cites><orcidid>0000-0002-3031-8058 ; 0000-0003-1873-8807 ; 0000-0002-0367-337X ; 0000-0003-0965-0950 ; 0000-0002-6011-4910 ; 0000-0003-3065-0314 ; 0000-0002-1326-3761 ; 0000-0003-1275-0629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-08010-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-08010-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39358514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giger, Gabriel H.</creatorcontrib><creatorcontrib>Ernst, Chantal</creatorcontrib><creatorcontrib>Richter, Ingrid</creatorcontrib><creatorcontrib>Gassler, Thomas</creatorcontrib><creatorcontrib>Field, Christopher M.</creatorcontrib><creatorcontrib>Sintsova, Anna</creatorcontrib><creatorcontrib>Kiefer, Patrick</creatorcontrib><creatorcontrib>Gäbelein, Christoph G.</creatorcontrib><creatorcontrib>Guillaume–Gentil, Orane</creatorcontrib><creatorcontrib>Scherlach, Kirstin</creatorcontrib><creatorcontrib>Bortfeld-Miller, Miriam</creatorcontrib><creatorcontrib>Zambelli, Tomaso</creatorcontrib><creatorcontrib>Sunagawa, Shinichi</creatorcontrib><creatorcontrib>Künzler, Markus</creatorcontrib><creatorcontrib>Hertweck, Christian</creatorcontrib><creatorcontrib>Vorholt, Julia A.</creatorcontrib><title>Inducing novel endosymbioses by implanting bacteria in fungi</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Endosymbioses have profoundly impacted the evolution of life and continue to shape the ecology of a wide range of species. They give rise to new combinations of biochemical capabilities that promote innovation and diversification 1 , 2 . Despite the many examples of known endosymbioses across the tree of life, their de novo emergence is rare and challenging to uncover in retrospect 3 – 5 . Here we implant bacteria into the filamentous fungus Rhizopus microsporus to follow the fate of artificially induced endosymbioses. Whereas Escherichia coli implanted into the cytosol induced septum formation, effectively halting endosymbiogenesis, Mycetohabitans rhizoxinica was transmitted vertically to the progeny at a low frequency. Continuous positive selection on endosymbiosis mitigated initial fitness constraints by several orders of magnitude upon adaptive evolution. Phenotypic changes were underscored by the accumulation of mutations in the host as the system stabilized. The bacterium produced rhizoxin congeners in its new host, demonstrating the transfer of a metabolic function through induced endosymbiosis. Single-cell implantation thus provides a powerful experimental approach to study critical events at the onset of endosymbiogenesis and opens opportunities for synthetic approaches towards designing endosymbioses with desired traits. A study presents an approach to establish and track a new endosymbiotic partnership by implanting bacteria in a non-host fungus and shows that stable inheritance of the implanted bacteria is possible with positive selection.</description><subject>13/31</subject><subject>14</subject><subject>14/19</subject><subject>14/3</subject><subject>38</subject><subject>38/23</subject><subject>42</subject><subject>42/35</subject><subject>45</subject><subject>631/158/855</subject><subject>631/326/193/2540</subject><subject>631/326/41/547</subject><subject>82</subject><subject>Adaptive systems</subject><subject>Bacteria</subject><subject>Biological evolution</subject><subject>Coliforms</subject><subject>Congeners</subject><subject>Cytosol</subject><subject>Cytosol - metabolism</subject><subject>Cytosol - microbiology</subject><subject>E coli</subject><subject>Escherichia coli - physiology</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Fungi</subject><subject>Genetic Fitness</subject><subject>Humanities and Social Sciences</subject><subject>Macrolides - chemistry</subject><subject>Macrolides - metabolism</subject><subject>Metabolism</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>New combinations</subject><subject>Phenotype</subject><subject>Positive selection</subject><subject>Rare species</subject><subject>Rhizopus - cytology</subject><subject>Rhizopus - physiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Symbiosis - physiology</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtLJDEUhYOMaPv4Ay6Ggtm4Kc07KRBExBcIbnQdUkm6jVQlPUlVY_9707bvhau7ON899x4OAAcIHiFI5HGmiEleQ0xrKCGC9fMGmCAqeE25FH_ABEIsi0T4NtjJ-QlCyJCgW2CbNIRJhugEnNwEOxofZlWIC9dVLtiYl33rY3a5apeV7-edDsOKaLUZXPK68qGajmHm98DmVHfZ7b_NXfBweXF_fl3f3l3dnJ_d1oYwPtQGU8lazKxudWOsbDTiQltBG-usdJxjYi3jRkyl0LqBQlhqhGgpNRRRgskuOF37zse2d9a4MCTdqXnyvU5LFbVX35XgH9UsLhRCjENJWXE4fHNI8f_o8qB6n43rSjQXx6wIQphhCSEv6L8f6FMcUyj5CkVwwxCXKwqvKZNizslNP75BUK3aUet2VGlHvbajnsvS3685Plbe6ygAWQO5SGHm0uftX2xfAPilm6c</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Giger, Gabriel H.</creator><creator>Ernst, Chantal</creator><creator>Richter, Ingrid</creator><creator>Gassler, Thomas</creator><creator>Field, Christopher M.</creator><creator>Sintsova, Anna</creator><creator>Kiefer, Patrick</creator><creator>Gäbelein, Christoph G.</creator><creator>Guillaume–Gentil, Orane</creator><creator>Scherlach, Kirstin</creator><creator>Bortfeld-Miller, Miriam</creator><creator>Zambelli, Tomaso</creator><creator>Sunagawa, Shinichi</creator><creator>Künzler, Markus</creator><creator>Hertweck, Christian</creator><creator>Vorholt, Julia A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3031-8058</orcidid><orcidid>https://orcid.org/0000-0003-1873-8807</orcidid><orcidid>https://orcid.org/0000-0002-0367-337X</orcidid><orcidid>https://orcid.org/0000-0003-0965-0950</orcidid><orcidid>https://orcid.org/0000-0002-6011-4910</orcidid><orcidid>https://orcid.org/0000-0003-3065-0314</orcidid><orcidid>https://orcid.org/0000-0002-1326-3761</orcidid><orcidid>https://orcid.org/0000-0003-1275-0629</orcidid></search><sort><creationdate>20241114</creationdate><title>Inducing novel endosymbioses by implanting bacteria in fungi</title><author>Giger, Gabriel H. ; Ernst, Chantal ; Richter, Ingrid ; Gassler, Thomas ; Field, Christopher M. ; Sintsova, Anna ; Kiefer, Patrick ; Gäbelein, Christoph G. ; Guillaume–Gentil, Orane ; Scherlach, Kirstin ; Bortfeld-Miller, Miriam ; Zambelli, Tomaso ; Sunagawa, Shinichi ; Künzler, Markus ; Hertweck, Christian ; Vorholt, Julia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c2485b25daba9cd89a167ad749ded8e6623dd56c7f87aa9077d4c77b44c414323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/31</topic><topic>14</topic><topic>14/19</topic><topic>14/3</topic><topic>38</topic><topic>38/23</topic><topic>42</topic><topic>42/35</topic><topic>45</topic><topic>631/158/855</topic><topic>631/326/193/2540</topic><topic>631/326/41/547</topic><topic>82</topic><topic>Adaptive systems</topic><topic>Bacteria</topic><topic>Biological evolution</topic><topic>Coliforms</topic><topic>Congeners</topic><topic>Cytosol</topic><topic>Cytosol - metabolism</topic><topic>Cytosol - microbiology</topic><topic>E coli</topic><topic>Escherichia coli - physiology</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Fungi</topic><topic>Genetic Fitness</topic><topic>Humanities and Social Sciences</topic><topic>Macrolides - chemistry</topic><topic>Macrolides - metabolism</topic><topic>Metabolism</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>New combinations</topic><topic>Phenotype</topic><topic>Positive selection</topic><topic>Rare species</topic><topic>Rhizopus - cytology</topic><topic>Rhizopus - physiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Symbiosis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giger, Gabriel H.</creatorcontrib><creatorcontrib>Ernst, Chantal</creatorcontrib><creatorcontrib>Richter, Ingrid</creatorcontrib><creatorcontrib>Gassler, Thomas</creatorcontrib><creatorcontrib>Field, Christopher M.</creatorcontrib><creatorcontrib>Sintsova, Anna</creatorcontrib><creatorcontrib>Kiefer, Patrick</creatorcontrib><creatorcontrib>Gäbelein, Christoph G.</creatorcontrib><creatorcontrib>Guillaume–Gentil, Orane</creatorcontrib><creatorcontrib>Scherlach, Kirstin</creatorcontrib><creatorcontrib>Bortfeld-Miller, Miriam</creatorcontrib><creatorcontrib>Zambelli, Tomaso</creatorcontrib><creatorcontrib>Sunagawa, Shinichi</creatorcontrib><creatorcontrib>Künzler, Markus</creatorcontrib><creatorcontrib>Hertweck, Christian</creatorcontrib><creatorcontrib>Vorholt, Julia A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giger, Gabriel H.</au><au>Ernst, Chantal</au><au>Richter, Ingrid</au><au>Gassler, Thomas</au><au>Field, Christopher M.</au><au>Sintsova, Anna</au><au>Kiefer, Patrick</au><au>Gäbelein, Christoph G.</au><au>Guillaume–Gentil, Orane</au><au>Scherlach, Kirstin</au><au>Bortfeld-Miller, Miriam</au><au>Zambelli, Tomaso</au><au>Sunagawa, Shinichi</au><au>Künzler, Markus</au><au>Hertweck, Christian</au><au>Vorholt, Julia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inducing novel endosymbioses by implanting bacteria in fungi</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-11-14</date><risdate>2024</risdate><volume>635</volume><issue>8038</issue><spage>415</spage><epage>422</epage><pages>415-422</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Endosymbioses have profoundly impacted the evolution of life and continue to shape the ecology of a wide range of species. They give rise to new combinations of biochemical capabilities that promote innovation and diversification 1 , 2 . Despite the many examples of known endosymbioses across the tree of life, their de novo emergence is rare and challenging to uncover in retrospect 3 – 5 . Here we implant bacteria into the filamentous fungus Rhizopus microsporus to follow the fate of artificially induced endosymbioses. Whereas Escherichia coli implanted into the cytosol induced septum formation, effectively halting endosymbiogenesis, Mycetohabitans rhizoxinica was transmitted vertically to the progeny at a low frequency. Continuous positive selection on endosymbiosis mitigated initial fitness constraints by several orders of magnitude upon adaptive evolution. Phenotypic changes were underscored by the accumulation of mutations in the host as the system stabilized. The bacterium produced rhizoxin congeners in its new host, demonstrating the transfer of a metabolic function through induced endosymbiosis. Single-cell implantation thus provides a powerful experimental approach to study critical events at the onset of endosymbiogenesis and opens opportunities for synthetic approaches towards designing endosymbioses with desired traits. A study presents an approach to establish and track a new endosymbiotic partnership by implanting bacteria in a non-host fungus and shows that stable inheritance of the implanted bacteria is possible with positive selection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39358514</pmid><doi>10.1038/s41586-024-08010-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3031-8058</orcidid><orcidid>https://orcid.org/0000-0003-1873-8807</orcidid><orcidid>https://orcid.org/0000-0002-0367-337X</orcidid><orcidid>https://orcid.org/0000-0003-0965-0950</orcidid><orcidid>https://orcid.org/0000-0002-6011-4910</orcidid><orcidid>https://orcid.org/0000-0003-3065-0314</orcidid><orcidid>https://orcid.org/0000-0002-1326-3761</orcidid><orcidid>https://orcid.org/0000-0003-1275-0629</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-11, Vol.635 (8038), p.415-422
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11560845
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 13/31
14
14/19
14/3
38
38/23
42
42/35
45
631/158/855
631/326/193/2540
631/326/41/547
82
Adaptive systems
Bacteria
Biological evolution
Coliforms
Congeners
Cytosol
Cytosol - metabolism
Cytosol - microbiology
E coli
Escherichia coli - physiology
Evolution
Evolution & development
Fungi
Genetic Fitness
Humanities and Social Sciences
Macrolides - chemistry
Macrolides - metabolism
Metabolism
Microscopy
multidisciplinary
Mutation
New combinations
Phenotype
Positive selection
Rare species
Rhizopus - cytology
Rhizopus - physiology
Science
Science (multidisciplinary)
Symbiosis - physiology
title Inducing novel endosymbioses by implanting bacteria in fungi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inducing%20novel%20endosymbioses%20by%20implanting%20bacteria%20in%20fungi&rft.jtitle=Nature%20(London)&rft.au=Giger,%20Gabriel%20H.&rft.date=2024-11-14&rft.volume=635&rft.issue=8038&rft.spage=415&rft.epage=422&rft.pages=415-422&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-08010-x&rft_dat=%3Cproquest_pubme%3E3112528006%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132951686&rft_id=info:pmid/39358514&rfr_iscdi=true