Life-Course Multidisciplinary Psychosocial Predictors of Dementia Among Older Adults: Results From the Health and Retirement Study

Abstract Background and Objectives Identifying predictors of dementia may help improve risk assessments, increase awareness for risk reduction, and identify potential targets for interventions. We use a life-course psychosocial multidisciplinary modeling framework to examine leading predictors of de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Innovation in aging 2024, Vol.8 (11), p.igae092
Hauptverfasser: Kuwayama, Sayaka, Tarraf, Wassim, González, Kevin A, Márquez, Freddie, González, Hector M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page igae092
container_title Innovation in aging
container_volume 8
creator Kuwayama, Sayaka
Tarraf, Wassim
González, Kevin A
Márquez, Freddie
González, Hector M
description Abstract Background and Objectives Identifying predictors of dementia may help improve risk assessments, increase awareness for risk reduction, and identify potential targets for interventions. We use a life-course psychosocial multidisciplinary modeling framework to examine leading predictors of dementia incidence. Research Design and Methods We use data from the Health and Retirement Study to measure 57 psychosocial factors across 7 different domains: (i) demographics, (ii) childhood experiences, (iii) socioeconomic conditions, (iv) health behaviors, (v) social connections, (vi) psychological characteristics, and (vii) adverse adulthood experiences. Our outcome is dementia incidence (over 8 years) operationalized using Langa–Weir classification for adults aged 65+ years who meet criteria for normal cognition at the baseline when all psychosocial factors are measured (N = 1 784 in training set and N = 1 611 in testing set). We compare the standard statistical method (Logistic regression) with machine learning (ML) method (Random Forest) in identifying predictors across the disciplines of interest. Results Standard and ML methods identified predictors that spanned multiple disciplines. The standard statistical methods identified lower education and childhood financial duress as among the leading predictors of dementia incidence. The ML method differed in their identification of predictors. Discussion and Implications The findings emphasize the importance of upstream risk and protective factors and the long-reaching impact of childhood experiences on cognitive health. The ML approach highlights the importance of life-course multidisciplinary frameworks for improving evidence-based interventions for dementia. Further investigations are needed to identify how complex interactions of life-course factors can be addressed through interventions.
doi_str_mv 10.1093/geroni/igae092
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11557907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/geroni/igae092</oup_id><sourcerecordid>3128827226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2252-74c827a025036346e55f6c1f55e909c78d22f9372357bef8e542002a6c9a1da53</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxa2KqqCUa4-Vj3DYxB_r3ZgLikJpkIJA_Thbjj2bGHnXqb1bKVf-ckwTED1xmpHmN2-e_RD6QsmYEskna4ihcxO31kAk-4BOGJeyEJyQozf9MTpN6YEQQiUvZck-oWMuRVmWkp6gx6VroJiHISbAt4PvnXXJuK13nY47fJ92ZhNSME57fB_BOtOHmHBo8BW00PVO41kbujW-8xYintkskS7wD0jPDb6OocX9BvACtO83WHc2z3oX_y3jn_1gd5_Rx0b7BKeHOkK_r7_9mi-K5d33m_lsWRjGBCvq0kxZrQkThFe8rECIpjK0EQIkkaaeWsYayWvGRb2CZgqiZIQwXRmpqdWCj9DlXnc7rFqwJhuI2qttdG1-qgraqf8nnduodfirKBWilqTOCmcHhRj-DJB61ebPAu91B2FIilM2zR4ZqzI63qMmhpQiNK93KFHP4al9eOoQXl74-tbdK_4SVQbO90AYtu-JPQEiMKfv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128827226</pqid></control><display><type>article</type><title>Life-Course Multidisciplinary Psychosocial Predictors of Dementia Among Older Adults: Results From the Health and Retirement Study</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kuwayama, Sayaka ; Tarraf, Wassim ; González, Kevin A ; Márquez, Freddie ; González, Hector M</creator><contributor>Stanley, Jennifer Tehan</contributor><creatorcontrib>Kuwayama, Sayaka ; Tarraf, Wassim ; González, Kevin A ; Márquez, Freddie ; González, Hector M ; Stanley, Jennifer Tehan</creatorcontrib><description>Abstract Background and Objectives Identifying predictors of dementia may help improve risk assessments, increase awareness for risk reduction, and identify potential targets for interventions. We use a life-course psychosocial multidisciplinary modeling framework to examine leading predictors of dementia incidence. Research Design and Methods We use data from the Health and Retirement Study to measure 57 psychosocial factors across 7 different domains: (i) demographics, (ii) childhood experiences, (iii) socioeconomic conditions, (iv) health behaviors, (v) social connections, (vi) psychological characteristics, and (vii) adverse adulthood experiences. Our outcome is dementia incidence (over 8 years) operationalized using Langa–Weir classification for adults aged 65+ years who meet criteria for normal cognition at the baseline when all psychosocial factors are measured (N = 1 784 in training set and N = 1 611 in testing set). We compare the standard statistical method (Logistic regression) with machine learning (ML) method (Random Forest) in identifying predictors across the disciplines of interest. Results Standard and ML methods identified predictors that spanned multiple disciplines. The standard statistical methods identified lower education and childhood financial duress as among the leading predictors of dementia incidence. The ML method differed in their identification of predictors. Discussion and Implications The findings emphasize the importance of upstream risk and protective factors and the long-reaching impact of childhood experiences on cognitive health. The ML approach highlights the importance of life-course multidisciplinary frameworks for improving evidence-based interventions for dementia. Further investigations are needed to identify how complex interactions of life-course factors can be addressed through interventions.</description><identifier>ISSN: 2399-5300</identifier><identifier>EISSN: 2399-5300</identifier><identifier>DOI: 10.1093/geroni/igae092</identifier><identifier>PMID: 39544491</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Original</subject><ispartof>Innovation in aging, 2024, Vol.8 (11), p.igae092</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of The Gerontological Society of America. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of The Gerontological Society of America.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2252-74c827a025036346e55f6c1f55e909c78d22f9372357bef8e542002a6c9a1da53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557907/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557907/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1605,4025,27928,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39544491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Stanley, Jennifer Tehan</contributor><creatorcontrib>Kuwayama, Sayaka</creatorcontrib><creatorcontrib>Tarraf, Wassim</creatorcontrib><creatorcontrib>González, Kevin A</creatorcontrib><creatorcontrib>Márquez, Freddie</creatorcontrib><creatorcontrib>González, Hector M</creatorcontrib><title>Life-Course Multidisciplinary Psychosocial Predictors of Dementia Among Older Adults: Results From the Health and Retirement Study</title><title>Innovation in aging</title><addtitle>Innov Aging</addtitle><description>Abstract Background and Objectives Identifying predictors of dementia may help improve risk assessments, increase awareness for risk reduction, and identify potential targets for interventions. We use a life-course psychosocial multidisciplinary modeling framework to examine leading predictors of dementia incidence. Research Design and Methods We use data from the Health and Retirement Study to measure 57 psychosocial factors across 7 different domains: (i) demographics, (ii) childhood experiences, (iii) socioeconomic conditions, (iv) health behaviors, (v) social connections, (vi) psychological characteristics, and (vii) adverse adulthood experiences. Our outcome is dementia incidence (over 8 years) operationalized using Langa–Weir classification for adults aged 65+ years who meet criteria for normal cognition at the baseline when all psychosocial factors are measured (N = 1 784 in training set and N = 1 611 in testing set). We compare the standard statistical method (Logistic regression) with machine learning (ML) method (Random Forest) in identifying predictors across the disciplines of interest. Results Standard and ML methods identified predictors that spanned multiple disciplines. The standard statistical methods identified lower education and childhood financial duress as among the leading predictors of dementia incidence. The ML method differed in their identification of predictors. Discussion and Implications The findings emphasize the importance of upstream risk and protective factors and the long-reaching impact of childhood experiences on cognitive health. The ML approach highlights the importance of life-course multidisciplinary frameworks for improving evidence-based interventions for dementia. Further investigations are needed to identify how complex interactions of life-course factors can be addressed through interventions.</description><subject>Original</subject><issn>2399-5300</issn><issn>2399-5300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkc1PGzEQxa2KqqCUa4-Vj3DYxB_r3ZgLikJpkIJA_Thbjj2bGHnXqb1bKVf-ckwTED1xmpHmN2-e_RD6QsmYEskna4ihcxO31kAk-4BOGJeyEJyQozf9MTpN6YEQQiUvZck-oWMuRVmWkp6gx6VroJiHISbAt4PvnXXJuK13nY47fJ92ZhNSME57fB_BOtOHmHBo8BW00PVO41kbujW-8xYintkskS7wD0jPDb6OocX9BvACtO83WHc2z3oX_y3jn_1gd5_Rx0b7BKeHOkK_r7_9mi-K5d33m_lsWRjGBCvq0kxZrQkThFe8rECIpjK0EQIkkaaeWsYayWvGRb2CZgqiZIQwXRmpqdWCj9DlXnc7rFqwJhuI2qttdG1-qgraqf8nnduodfirKBWilqTOCmcHhRj-DJB61ebPAu91B2FIilM2zR4ZqzI63qMmhpQiNK93KFHP4al9eOoQXl74-tbdK_4SVQbO90AYtu-JPQEiMKfv</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kuwayama, Sayaka</creator><creator>Tarraf, Wassim</creator><creator>González, Kevin A</creator><creator>Márquez, Freddie</creator><creator>González, Hector M</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2024</creationdate><title>Life-Course Multidisciplinary Psychosocial Predictors of Dementia Among Older Adults: Results From the Health and Retirement Study</title><author>Kuwayama, Sayaka ; Tarraf, Wassim ; González, Kevin A ; Márquez, Freddie ; González, Hector M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2252-74c827a025036346e55f6c1f55e909c78d22f9372357bef8e542002a6c9a1da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuwayama, Sayaka</creatorcontrib><creatorcontrib>Tarraf, Wassim</creatorcontrib><creatorcontrib>González, Kevin A</creatorcontrib><creatorcontrib>Márquez, Freddie</creatorcontrib><creatorcontrib>González, Hector M</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Innovation in aging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuwayama, Sayaka</au><au>Tarraf, Wassim</au><au>González, Kevin A</au><au>Márquez, Freddie</au><au>González, Hector M</au><au>Stanley, Jennifer Tehan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Life-Course Multidisciplinary Psychosocial Predictors of Dementia Among Older Adults: Results From the Health and Retirement Study</atitle><jtitle>Innovation in aging</jtitle><addtitle>Innov Aging</addtitle><date>2024</date><risdate>2024</risdate><volume>8</volume><issue>11</issue><spage>igae092</spage><pages>igae092-</pages><issn>2399-5300</issn><eissn>2399-5300</eissn><abstract>Abstract Background and Objectives Identifying predictors of dementia may help improve risk assessments, increase awareness for risk reduction, and identify potential targets for interventions. We use a life-course psychosocial multidisciplinary modeling framework to examine leading predictors of dementia incidence. Research Design and Methods We use data from the Health and Retirement Study to measure 57 psychosocial factors across 7 different domains: (i) demographics, (ii) childhood experiences, (iii) socioeconomic conditions, (iv) health behaviors, (v) social connections, (vi) psychological characteristics, and (vii) adverse adulthood experiences. Our outcome is dementia incidence (over 8 years) operationalized using Langa–Weir classification for adults aged 65+ years who meet criteria for normal cognition at the baseline when all psychosocial factors are measured (N = 1 784 in training set and N = 1 611 in testing set). We compare the standard statistical method (Logistic regression) with machine learning (ML) method (Random Forest) in identifying predictors across the disciplines of interest. Results Standard and ML methods identified predictors that spanned multiple disciplines. The standard statistical methods identified lower education and childhood financial duress as among the leading predictors of dementia incidence. The ML method differed in their identification of predictors. Discussion and Implications The findings emphasize the importance of upstream risk and protective factors and the long-reaching impact of childhood experiences on cognitive health. The ML approach highlights the importance of life-course multidisciplinary frameworks for improving evidence-based interventions for dementia. Further investigations are needed to identify how complex interactions of life-course factors can be addressed through interventions.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>39544491</pmid><doi>10.1093/geroni/igae092</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-5300
ispartof Innovation in aging, 2024, Vol.8 (11), p.igae092
issn 2399-5300
2399-5300
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11557907
source DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Original
title Life-Course Multidisciplinary Psychosocial Predictors of Dementia Among Older Adults: Results From the Health and Retirement Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T22%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Life-Course%20Multidisciplinary%20Psychosocial%20Predictors%20of%20Dementia%20Among%20Older%20Adults:%20Results%20From%20the%20Health%20and%20Retirement%20Study&rft.jtitle=Innovation%20in%20aging&rft.au=Kuwayama,%20Sayaka&rft.date=2024&rft.volume=8&rft.issue=11&rft.spage=igae092&rft.pages=igae092-&rft.issn=2399-5300&rft.eissn=2399-5300&rft_id=info:doi/10.1093/geroni/igae092&rft_dat=%3Cproquest_pubme%3E3128827226%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128827226&rft_id=info:pmid/39544491&rft_oup_id=10.1093/geroni/igae092&rfr_iscdi=true