The prognostic importance of traumatic axonal injury on early MRI: the Trondheim TAI-MRI grading and quantitative models

Objectives We analysed magnetic resonance imaging (MRI) findings after traumatic brain injury (TBI) aiming to improve the grading of traumatic axonal injury (TAI) to better reflect the outcome. Methods Four-hundred sixty-three patients (8–70 years) with mild ( n  = 158), moderate ( n  = 129), or sev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2024-12, Vol.34 (12), p.8015-8029
Hauptverfasser: Moen, Kent Gøran, Flusund, Anne-Mari Holte, Moe, Hans Kristian, Andelic, Nada, Skandsen, Toril, Håberg, Asta, Kvistad, Kjell Arne, Olsen, Øystein, Saksvoll, Elin Hildrum, Abel-Grüner, Sebastian, Anke, Audny, Follestad, Turid, Vik, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8029
container_issue 12
container_start_page 8015
container_title European radiology
container_volume 34
creator Moen, Kent Gøran
Flusund, Anne-Mari Holte
Moe, Hans Kristian
Andelic, Nada
Skandsen, Toril
Håberg, Asta
Kvistad, Kjell Arne
Olsen, Øystein
Saksvoll, Elin Hildrum
Abel-Grüner, Sebastian
Anke, Audny
Follestad, Turid
Vik, Anne
description Objectives We analysed magnetic resonance imaging (MRI) findings after traumatic brain injury (TBI) aiming to improve the grading of traumatic axonal injury (TAI) to better reflect the outcome. Methods Four-hundred sixty-three patients (8–70 years) with mild ( n  = 158), moderate ( n  = 129), or severe ( n  = 176) TBI and early MRI were prospectively included. TAI presence, numbers, and volumes at predefined locations were registered on fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted imaging, and presence and numbers on T2*GRE/SWI. Presence and volumes of contusions were registered on FLAIR. We assessed the outcome with the Glasgow Outcome Scale Extended. Multivariable logistic and elastic-net regression analyses were performed. Results The presence of TAI differed between mild (6%), moderate (70%), and severe TBI (95%). In severe TBI, bilateral TAI in mesencephalon or thalami and bilateral TAI in pons predicted worse outcomes and were defined as the worst grades (4 and 5, respectively) in the Trondheim TAI-MRI grading . The Trondheim TAI-MRI grading performed better than the standard TAI grading in severe TBI (pseudo- R 2 0.19 vs. 0.16). In moderate-severe TBI, quantitative models including both FLAIR volume of TAI and contusions performed best (pseudo- R 2 0.19–0.21). In patients with mild TBI or Glasgow Coma Scale (GCS) score 13, models with the volume of contusions performed best (pseudo- R 2 0.25–0.26). Conclusions We propose the Trondheim TAI-MRI grading (grades 1–5) with bilateral TAI in mesencephalon or thalami, and bilateral TAI in pons as the worst grades. The predictive value was highest for the quantitative models including FLAIR volume of TAI and contusions (GCS score
doi_str_mv 10.1007/s00330-024-10841-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11557676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127420282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-6edcbbfbfd97795e1759ee2eabf707396269659ba44d85b63ad763173cfc1533</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EomXhD3AAS1y4BMYfiRMuqKpoWakICeVuOckk61Vib-2k6v57vN22FA6cbM-8fubjJeQtg08MQH2OAEJABlxmDErJMvaMnDIp-N3z-ZP7CXkV4xYAKibVS3IiyrIquOCn5LbeIN0FPzgfZ9tSO-18mI1rkfqezsEskznEza13ZqTWbZewp95RNGHc0x-_1l_onBB18K7boJ1ofbbOUpgOwXTWDdS4jl4vxs12TqQbpJPvcIyvyYvejBHf3J8rUl98q8-_Z1c_L9fnZ1dZK3k1ZwV2bdP0Td9VSlU5MpVXiBxN0ytQIk1RVEVeNUbKrsybQphOFYIp0fYty4VYka9H7G5ppsRCl2Ya9S7YyYS99sbqvzPObvTgbzRjea6KxFqR90dCG2xakdPOB6OTAUJpkQOwpPh4XyP46wXjrCcbWxxH49AvUQtQUILk_AD78I9065eQNptUjCvJgZc8qfhDSR9jwP6xXwaHykofrdfJen1nvT508e7ppI9fHrxOAnEUxJRyA4Y_tf-D_Q3OQLlu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127420282</pqid></control><display><type>article</type><title>The prognostic importance of traumatic axonal injury on early MRI: the Trondheim TAI-MRI grading and quantitative models</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>SpringerLink Journals - AutoHoldings</source><creator>Moen, Kent Gøran ; Flusund, Anne-Mari Holte ; Moe, Hans Kristian ; Andelic, Nada ; Skandsen, Toril ; Håberg, Asta ; Kvistad, Kjell Arne ; Olsen, Øystein ; Saksvoll, Elin Hildrum ; Abel-Grüner, Sebastian ; Anke, Audny ; Follestad, Turid ; Vik, Anne</creator><creatorcontrib>Moen, Kent Gøran ; Flusund, Anne-Mari Holte ; Moe, Hans Kristian ; Andelic, Nada ; Skandsen, Toril ; Håberg, Asta ; Kvistad, Kjell Arne ; Olsen, Øystein ; Saksvoll, Elin Hildrum ; Abel-Grüner, Sebastian ; Anke, Audny ; Follestad, Turid ; Vik, Anne</creatorcontrib><description>Objectives We analysed magnetic resonance imaging (MRI) findings after traumatic brain injury (TBI) aiming to improve the grading of traumatic axonal injury (TAI) to better reflect the outcome. Methods Four-hundred sixty-three patients (8–70 years) with mild ( n  = 158), moderate ( n  = 129), or severe ( n  = 176) TBI and early MRI were prospectively included. TAI presence, numbers, and volumes at predefined locations were registered on fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted imaging, and presence and numbers on T2*GRE/SWI. Presence and volumes of contusions were registered on FLAIR. We assessed the outcome with the Glasgow Outcome Scale Extended. Multivariable logistic and elastic-net regression analyses were performed. Results The presence of TAI differed between mild (6%), moderate (70%), and severe TBI (95%). In severe TBI, bilateral TAI in mesencephalon or thalami and bilateral TAI in pons predicted worse outcomes and were defined as the worst grades (4 and 5, respectively) in the Trondheim TAI-MRI grading . The Trondheim TAI-MRI grading performed better than the standard TAI grading in severe TBI (pseudo- R 2 0.19 vs. 0.16). In moderate-severe TBI, quantitative models including both FLAIR volume of TAI and contusions performed best (pseudo- R 2 0.19–0.21). In patients with mild TBI or Glasgow Coma Scale (GCS) score 13, models with the volume of contusions performed best (pseudo- R 2 0.25–0.26). Conclusions We propose the Trondheim TAI-MRI grading (grades 1–5) with bilateral TAI in mesencephalon or thalami, and bilateral TAI in pons as the worst grades. The predictive value was highest for the quantitative models including FLAIR volume of TAI and contusions (GCS score &lt;13) or FLAIR volume of contusions (GCS score ≥ 13), which emphasise artificial intelligence as a potentially important future tool. Clinical relevance statement The Trondheim TAI-MRI grading reflects patient outcomes better in severe TBI than today’s standard TAI grading and can be implemented after external validation. The prognostic importance of volumetric models is promising for future use of artificial intelligence technologies. Key Points Traumatic axonal injury (TAI) is an important injury type in all TBI severities. Studies demonstrating which MRI findings that can serve as future biomarkers are highly warranted. This study proposes the most optimal MRI models for predicting patient outcome at 6 months after TBI; one updated pragmatic model and a volumetric model. The Trondheim TAI-MRI grading, in severe TBI, reflects patient outcome better than today’s standard grading of TAI and the prognostic importance of volumetric models in all severities of TBI is promising for future use of AI.</description><identifier>ISSN: 1432-1084</identifier><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-024-10841-1</identifier><identifier>PMID: 38896232</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adolescent ; Adult ; Aged ; Artificial intelligence ; Biomarkers ; Brain Injuries, Traumatic - diagnostic imaging ; Child ; Contusions ; Diagnostic Radiology ; Diffuse Axonal Injury - diagnostic imaging ; Elastic analysis ; Female ; Head injuries ; Humans ; Imaging ; Injury analysis ; Internal Medicine ; Interventional Radiology ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Mesencephalon ; Middle Aged ; Neuro ; Neuroimaging ; Neuroradiology ; Pons ; Prognosis ; Prospective Studies ; Radiology ; Regression analysis ; Traumatic brain injury ; Ultrasound ; Young Adult</subject><ispartof>European radiology, 2024-12, Vol.34 (12), p.8015-8029</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-6edcbbfbfd97795e1759ee2eabf707396269659ba44d85b63ad763173cfc1533</citedby><cites>FETCH-LOGICAL-c429t-6edcbbfbfd97795e1759ee2eabf707396269659ba44d85b63ad763173cfc1533</cites><orcidid>0000-0003-0937-1986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-024-10841-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-024-10841-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,26567,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38896232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moen, Kent Gøran</creatorcontrib><creatorcontrib>Flusund, Anne-Mari Holte</creatorcontrib><creatorcontrib>Moe, Hans Kristian</creatorcontrib><creatorcontrib>Andelic, Nada</creatorcontrib><creatorcontrib>Skandsen, Toril</creatorcontrib><creatorcontrib>Håberg, Asta</creatorcontrib><creatorcontrib>Kvistad, Kjell Arne</creatorcontrib><creatorcontrib>Olsen, Øystein</creatorcontrib><creatorcontrib>Saksvoll, Elin Hildrum</creatorcontrib><creatorcontrib>Abel-Grüner, Sebastian</creatorcontrib><creatorcontrib>Anke, Audny</creatorcontrib><creatorcontrib>Follestad, Turid</creatorcontrib><creatorcontrib>Vik, Anne</creatorcontrib><title>The prognostic importance of traumatic axonal injury on early MRI: the Trondheim TAI-MRI grading and quantitative models</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objectives We analysed magnetic resonance imaging (MRI) findings after traumatic brain injury (TBI) aiming to improve the grading of traumatic axonal injury (TAI) to better reflect the outcome. Methods Four-hundred sixty-three patients (8–70 years) with mild ( n  = 158), moderate ( n  = 129), or severe ( n  = 176) TBI and early MRI were prospectively included. TAI presence, numbers, and volumes at predefined locations were registered on fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted imaging, and presence and numbers on T2*GRE/SWI. Presence and volumes of contusions were registered on FLAIR. We assessed the outcome with the Glasgow Outcome Scale Extended. Multivariable logistic and elastic-net regression analyses were performed. Results The presence of TAI differed between mild (6%), moderate (70%), and severe TBI (95%). In severe TBI, bilateral TAI in mesencephalon or thalami and bilateral TAI in pons predicted worse outcomes and were defined as the worst grades (4 and 5, respectively) in the Trondheim TAI-MRI grading . The Trondheim TAI-MRI grading performed better than the standard TAI grading in severe TBI (pseudo- R 2 0.19 vs. 0.16). In moderate-severe TBI, quantitative models including both FLAIR volume of TAI and contusions performed best (pseudo- R 2 0.19–0.21). In patients with mild TBI or Glasgow Coma Scale (GCS) score 13, models with the volume of contusions performed best (pseudo- R 2 0.25–0.26). Conclusions We propose the Trondheim TAI-MRI grading (grades 1–5) with bilateral TAI in mesencephalon or thalami, and bilateral TAI in pons as the worst grades. The predictive value was highest for the quantitative models including FLAIR volume of TAI and contusions (GCS score &lt;13) or FLAIR volume of contusions (GCS score ≥ 13), which emphasise artificial intelligence as a potentially important future tool. Clinical relevance statement The Trondheim TAI-MRI grading reflects patient outcomes better in severe TBI than today’s standard TAI grading and can be implemented after external validation. The prognostic importance of volumetric models is promising for future use of artificial intelligence technologies. Key Points Traumatic axonal injury (TAI) is an important injury type in all TBI severities. Studies demonstrating which MRI findings that can serve as future biomarkers are highly warranted. This study proposes the most optimal MRI models for predicting patient outcome at 6 months after TBI; one updated pragmatic model and a volumetric model. The Trondheim TAI-MRI grading, in severe TBI, reflects patient outcome better than today’s standard grading of TAI and the prognostic importance of volumetric models in all severities of TBI is promising for future use of AI.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Artificial intelligence</subject><subject>Biomarkers</subject><subject>Brain Injuries, Traumatic - diagnostic imaging</subject><subject>Child</subject><subject>Contusions</subject><subject>Diagnostic Radiology</subject><subject>Diffuse Axonal Injury - diagnostic imaging</subject><subject>Elastic analysis</subject><subject>Female</subject><subject>Head injuries</subject><subject>Humans</subject><subject>Imaging</subject><subject>Injury analysis</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mesencephalon</subject><subject>Middle Aged</subject><subject>Neuro</subject><subject>Neuroimaging</subject><subject>Neuroradiology</subject><subject>Pons</subject><subject>Prognosis</subject><subject>Prospective Studies</subject><subject>Radiology</subject><subject>Regression analysis</subject><subject>Traumatic brain injury</subject><subject>Ultrasound</subject><subject>Young Adult</subject><issn>1432-1084</issn><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNp9kU1v1DAQhi0EomXhD3AAS1y4BMYfiRMuqKpoWakICeVuOckk61Vib-2k6v57vN22FA6cbM-8fubjJeQtg08MQH2OAEJABlxmDErJMvaMnDIp-N3z-ZP7CXkV4xYAKibVS3IiyrIquOCn5LbeIN0FPzgfZ9tSO-18mI1rkfqezsEskznEza13ZqTWbZewp95RNGHc0x-_1l_onBB18K7boJ1ofbbOUpgOwXTWDdS4jl4vxs12TqQbpJPvcIyvyYvejBHf3J8rUl98q8-_Z1c_L9fnZ1dZK3k1ZwV2bdP0Td9VSlU5MpVXiBxN0ytQIk1RVEVeNUbKrsybQphOFYIp0fYty4VYka9H7G5ppsRCl2Ya9S7YyYS99sbqvzPObvTgbzRjea6KxFqR90dCG2xakdPOB6OTAUJpkQOwpPh4XyP46wXjrCcbWxxH49AvUQtQUILk_AD78I9065eQNptUjCvJgZc8qfhDSR9jwP6xXwaHykofrdfJen1nvT508e7ppI9fHrxOAnEUxJRyA4Y_tf-D_Q3OQLlu</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Moen, Kent Gøran</creator><creator>Flusund, Anne-Mari Holte</creator><creator>Moe, Hans Kristian</creator><creator>Andelic, Nada</creator><creator>Skandsen, Toril</creator><creator>Håberg, Asta</creator><creator>Kvistad, Kjell Arne</creator><creator>Olsen, Øystein</creator><creator>Saksvoll, Elin Hildrum</creator><creator>Abel-Grüner, Sebastian</creator><creator>Anke, Audny</creator><creator>Follestad, Turid</creator><creator>Vik, Anne</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Nature</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0937-1986</orcidid></search><sort><creationdate>202412</creationdate><title>The prognostic importance of traumatic axonal injury on early MRI: the Trondheim TAI-MRI grading and quantitative models</title><author>Moen, Kent Gøran ; Flusund, Anne-Mari Holte ; Moe, Hans Kristian ; Andelic, Nada ; Skandsen, Toril ; Håberg, Asta ; Kvistad, Kjell Arne ; Olsen, Øystein ; Saksvoll, Elin Hildrum ; Abel-Grüner, Sebastian ; Anke, Audny ; Follestad, Turid ; Vik, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-6edcbbfbfd97795e1759ee2eabf707396269659ba44d85b63ad763173cfc1533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Artificial intelligence</topic><topic>Biomarkers</topic><topic>Brain Injuries, Traumatic - diagnostic imaging</topic><topic>Child</topic><topic>Contusions</topic><topic>Diagnostic Radiology</topic><topic>Diffuse Axonal Injury - diagnostic imaging</topic><topic>Elastic analysis</topic><topic>Female</topic><topic>Head injuries</topic><topic>Humans</topic><topic>Imaging</topic><topic>Injury analysis</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mesencephalon</topic><topic>Middle Aged</topic><topic>Neuro</topic><topic>Neuroimaging</topic><topic>Neuroradiology</topic><topic>Pons</topic><topic>Prognosis</topic><topic>Prospective Studies</topic><topic>Radiology</topic><topic>Regression analysis</topic><topic>Traumatic brain injury</topic><topic>Ultrasound</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moen, Kent Gøran</creatorcontrib><creatorcontrib>Flusund, Anne-Mari Holte</creatorcontrib><creatorcontrib>Moe, Hans Kristian</creatorcontrib><creatorcontrib>Andelic, Nada</creatorcontrib><creatorcontrib>Skandsen, Toril</creatorcontrib><creatorcontrib>Håberg, Asta</creatorcontrib><creatorcontrib>Kvistad, Kjell Arne</creatorcontrib><creatorcontrib>Olsen, Øystein</creatorcontrib><creatorcontrib>Saksvoll, Elin Hildrum</creatorcontrib><creatorcontrib>Abel-Grüner, Sebastian</creatorcontrib><creatorcontrib>Anke, Audny</creatorcontrib><creatorcontrib>Follestad, Turid</creatorcontrib><creatorcontrib>Vik, Anne</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moen, Kent Gøran</au><au>Flusund, Anne-Mari Holte</au><au>Moe, Hans Kristian</au><au>Andelic, Nada</au><au>Skandsen, Toril</au><au>Håberg, Asta</au><au>Kvistad, Kjell Arne</au><au>Olsen, Øystein</au><au>Saksvoll, Elin Hildrum</au><au>Abel-Grüner, Sebastian</au><au>Anke, Audny</au><au>Follestad, Turid</au><au>Vik, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The prognostic importance of traumatic axonal injury on early MRI: the Trondheim TAI-MRI grading and quantitative models</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>34</volume><issue>12</issue><spage>8015</spage><epage>8029</epage><pages>8015-8029</pages><issn>1432-1084</issn><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives We analysed magnetic resonance imaging (MRI) findings after traumatic brain injury (TBI) aiming to improve the grading of traumatic axonal injury (TAI) to better reflect the outcome. Methods Four-hundred sixty-three patients (8–70 years) with mild ( n  = 158), moderate ( n  = 129), or severe ( n  = 176) TBI and early MRI were prospectively included. TAI presence, numbers, and volumes at predefined locations were registered on fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted imaging, and presence and numbers on T2*GRE/SWI. Presence and volumes of contusions were registered on FLAIR. We assessed the outcome with the Glasgow Outcome Scale Extended. Multivariable logistic and elastic-net regression analyses were performed. Results The presence of TAI differed between mild (6%), moderate (70%), and severe TBI (95%). In severe TBI, bilateral TAI in mesencephalon or thalami and bilateral TAI in pons predicted worse outcomes and were defined as the worst grades (4 and 5, respectively) in the Trondheim TAI-MRI grading . The Trondheim TAI-MRI grading performed better than the standard TAI grading in severe TBI (pseudo- R 2 0.19 vs. 0.16). In moderate-severe TBI, quantitative models including both FLAIR volume of TAI and contusions performed best (pseudo- R 2 0.19–0.21). In patients with mild TBI or Glasgow Coma Scale (GCS) score 13, models with the volume of contusions performed best (pseudo- R 2 0.25–0.26). Conclusions We propose the Trondheim TAI-MRI grading (grades 1–5) with bilateral TAI in mesencephalon or thalami, and bilateral TAI in pons as the worst grades. The predictive value was highest for the quantitative models including FLAIR volume of TAI and contusions (GCS score &lt;13) or FLAIR volume of contusions (GCS score ≥ 13), which emphasise artificial intelligence as a potentially important future tool. Clinical relevance statement The Trondheim TAI-MRI grading reflects patient outcomes better in severe TBI than today’s standard TAI grading and can be implemented after external validation. The prognostic importance of volumetric models is promising for future use of artificial intelligence technologies. Key Points Traumatic axonal injury (TAI) is an important injury type in all TBI severities. Studies demonstrating which MRI findings that can serve as future biomarkers are highly warranted. This study proposes the most optimal MRI models for predicting patient outcome at 6 months after TBI; one updated pragmatic model and a volumetric model. The Trondheim TAI-MRI grading, in severe TBI, reflects patient outcome better than today’s standard grading of TAI and the prognostic importance of volumetric models in all severities of TBI is promising for future use of AI.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38896232</pmid><doi>10.1007/s00330-024-10841-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0937-1986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-1084
ispartof European radiology, 2024-12, Vol.34 (12), p.8015-8029
issn 1432-1084
0938-7994
1432-1084
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11557676
source MEDLINE; NORA - Norwegian Open Research Archives; SpringerLink Journals - AutoHoldings
subjects Adolescent
Adult
Aged
Artificial intelligence
Biomarkers
Brain Injuries, Traumatic - diagnostic imaging
Child
Contusions
Diagnostic Radiology
Diffuse Axonal Injury - diagnostic imaging
Elastic analysis
Female
Head injuries
Humans
Imaging
Injury analysis
Internal Medicine
Interventional Radiology
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Medicine
Medicine & Public Health
Mesencephalon
Middle Aged
Neuro
Neuroimaging
Neuroradiology
Pons
Prognosis
Prospective Studies
Radiology
Regression analysis
Traumatic brain injury
Ultrasound
Young Adult
title The prognostic importance of traumatic axonal injury on early MRI: the Trondheim TAI-MRI grading and quantitative models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20prognostic%20importance%20of%20traumatic%20axonal%20injury%20on%20early%20MRI:%20the%20Trondheim%20TAI-MRI%20grading%20and%20quantitative%20models&rft.jtitle=European%20radiology&rft.au=Moen,%20Kent%20G%C3%B8ran&rft.date=2024-12&rft.volume=34&rft.issue=12&rft.spage=8015&rft.epage=8029&rft.pages=8015-8029&rft.issn=1432-1084&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-024-10841-1&rft_dat=%3Cproquest_pubme%3E3127420282%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127420282&rft_id=info:pmid/38896232&rfr_iscdi=true