ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information
Abstract Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2024-09, Vol.25 (6) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Briefings in bioinformatics |
container_volume | 25 |
creator | Yu, Qiule Zhang, Zhixing Liu, Guixia Li, Weihua Tang, Yun |
description | Abstract
Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the 3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN. |
doi_str_mv | 10.1093/bib/bbae583 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11555482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbae583</oup_id><sourcerecordid>3130965880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b6bc20894c7c415407d6e784d0bc151370983fbce24f1eae51288945a33f4ab53</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxYMo9o-u3EtAkIKMTSbJTKYbkaL1QdFNXYckc-e91JlkTDK1_RZ-ZPN4z4e6cJXA_eWce3IQekHJW0o6dm6cOTdGg5DsETqmvG0rTgR_vL03bSV4w47QSUq3hNSklfQpOmKdYIQzcox-3oT7q9XnC6w9Xnmc3OhswHOE3tnsgsdT6GHEQ4h4hjm7HnAO9866_IDvnMbrqOcNdilMIc4blybsIf8I8VvCzmco4-z8-vA2wfcFvIVi1-OU42LzEqGgxWDSW8Nn6MmgxwTP9-cp-vrxw83lp-r6y9Xq8v11ZeuuzpVpjK2J7LhtLaeCk7ZvoJW8J8ZSQVlLOskGY6HmA4XyObSWhRaasYFrI9gperfTnRczQW_B56hHNUc36figgnbq74l3G7UOd4pSIQSXdVE42yvEUFKlrCaXLIyj9hCWpFixbIXknBf01T_obViiL_kKxUjXCClJod7sKBtDShGGwzaUqG3VqlSt9lUX-uWfAQ7s724L8HoHhGX-r9Iv5Nu2LQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130965880</pqid></control><display><type>article</type><title>ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><creator>Yu, Qiule ; Zhang, Zhixing ; Liu, Guixia ; Li, Weihua ; Tang, Yun</creator><creatorcontrib>Yu, Qiule ; Zhang, Zhixing ; Liu, Guixia ; Li, Weihua ; Tang, Yun</creatorcontrib><description>Abstract
Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the 3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN.</description><identifier>ISSN: 1467-5463</identifier><identifier>ISSN: 1477-4054</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbae583</identifier><identifier>PMID: 39530430</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Amino acid composition ; Amino Acid Sequence ; Amino acids ; Computational Biology - methods ; Computer Simulation ; Correlation coefficient ; Correlation coefficients ; Drug development ; Feature extraction ; Graph theory ; Humans ; Information processing ; Isomorphism ; Modules ; Nodes ; Peptides ; Peptides - chemistry ; Prediction models ; Problem Solving Protocol ; Software ; Toxicity ; Toxicity testing</subject><ispartof>Briefings in bioinformatics, 2024-09, Vol.25 (6)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-b6bc20894c7c415407d6e784d0bc151370983fbce24f1eae51288945a33f4ab53</cites><orcidid>0000-0001-9648-844X ; 0000-0003-2340-1109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555482/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555482/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,1605,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39530430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Qiule</creatorcontrib><creatorcontrib>Zhang, Zhixing</creatorcontrib><creatorcontrib>Liu, Guixia</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Tang, Yun</creatorcontrib><title>ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract
Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the 3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN.</description><subject>Algorithms</subject><subject>Amino acid composition</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Drug development</subject><subject>Feature extraction</subject><subject>Graph theory</subject><subject>Humans</subject><subject>Information processing</subject><subject>Isomorphism</subject><subject>Modules</subject><subject>Nodes</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Prediction models</subject><subject>Problem Solving Protocol</subject><subject>Software</subject><subject>Toxicity</subject><subject>Toxicity testing</subject><issn>1467-5463</issn><issn>1477-4054</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU9rFTEUxYMo9o-u3EtAkIKMTSbJTKYbkaL1QdFNXYckc-e91JlkTDK1_RZ-ZPN4z4e6cJXA_eWce3IQekHJW0o6dm6cOTdGg5DsETqmvG0rTgR_vL03bSV4w47QSUq3hNSklfQpOmKdYIQzcox-3oT7q9XnC6w9Xnmc3OhswHOE3tnsgsdT6GHEQ4h4hjm7HnAO9866_IDvnMbrqOcNdilMIc4blybsIf8I8VvCzmco4-z8-vA2wfcFvIVi1-OU42LzEqGgxWDSW8Nn6MmgxwTP9-cp-vrxw83lp-r6y9Xq8v11ZeuuzpVpjK2J7LhtLaeCk7ZvoJW8J8ZSQVlLOskGY6HmA4XyObSWhRaasYFrI9gperfTnRczQW_B56hHNUc36figgnbq74l3G7UOd4pSIQSXdVE42yvEUFKlrCaXLIyj9hCWpFixbIXknBf01T_obViiL_kKxUjXCClJod7sKBtDShGGwzaUqG3VqlSt9lUX-uWfAQ7s724L8HoHhGX-r9Iv5Nu2LQ</recordid><startdate>20240923</startdate><enddate>20240923</enddate><creator>Yu, Qiule</creator><creator>Zhang, Zhixing</creator><creator>Liu, Guixia</creator><creator>Li, Weihua</creator><creator>Tang, Yun</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9648-844X</orcidid><orcidid>https://orcid.org/0000-0003-2340-1109</orcidid></search><sort><creationdate>20240923</creationdate><title>ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information</title><author>Yu, Qiule ; Zhang, Zhixing ; Liu, Guixia ; Li, Weihua ; Tang, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b6bc20894c7c415407d6e784d0bc151370983fbce24f1eae51288945a33f4ab53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Amino acid composition</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Drug development</topic><topic>Feature extraction</topic><topic>Graph theory</topic><topic>Humans</topic><topic>Information processing</topic><topic>Isomorphism</topic><topic>Modules</topic><topic>Nodes</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Prediction models</topic><topic>Problem Solving Protocol</topic><topic>Software</topic><topic>Toxicity</topic><topic>Toxicity testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Qiule</creatorcontrib><creatorcontrib>Zhang, Zhixing</creatorcontrib><creatorcontrib>Liu, Guixia</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Tang, Yun</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Qiule</au><au>Zhang, Zhixing</au><au>Liu, Guixia</au><au>Li, Weihua</au><au>Tang, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2024-09-23</date><risdate>2024</risdate><volume>25</volume><issue>6</issue><issn>1467-5463</issn><issn>1477-4054</issn><eissn>1477-4054</eissn><abstract>Abstract
Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the 3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39530430</pmid><doi>10.1093/bib/bbae583</doi><orcidid>https://orcid.org/0000-0001-9648-844X</orcidid><orcidid>https://orcid.org/0000-0003-2340-1109</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2024-09, Vol.25 (6) |
issn | 1467-5463 1477-4054 1477-4054 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11555482 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); PubMed Central |
subjects | Algorithms Amino acid composition Amino Acid Sequence Amino acids Computational Biology - methods Computer Simulation Correlation coefficient Correlation coefficients Drug development Feature extraction Graph theory Humans Information processing Isomorphism Modules Nodes Peptides Peptides - chemistry Prediction models Problem Solving Protocol Software Toxicity Toxicity testing |
title | ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ToxGIN:%20an%20In%20silico%20prediction%20model%20for%20peptide%20toxicity%20via%20graph%20isomorphism%20networks%20integrating%20peptide%20sequence%20and%20structure%20information&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Yu,%20Qiule&rft.date=2024-09-23&rft.volume=25&rft.issue=6&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbae583&rft_dat=%3Cproquest_pubme%3E3130965880%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130965880&rft_id=info:pmid/39530430&rft_oup_id=10.1093/bib/bbae583&rfr_iscdi=true |