ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information

Abstract Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2024-09, Vol.25 (6)
Hauptverfasser: Yu, Qiule, Zhang, Zhixing, Liu, Guixia, Li, Weihua, Tang, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Briefings in bioinformatics
container_volume 25
creator Yu, Qiule
Zhang, Zhixing
Liu, Guixia
Li, Weihua
Tang, Yun
description Abstract Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the 3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN.
doi_str_mv 10.1093/bib/bbae583
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11555482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbae583</oup_id><sourcerecordid>3130965880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b6bc20894c7c415407d6e784d0bc151370983fbce24f1eae51288945a33f4ab53</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxYMo9o-u3EtAkIKMTSbJTKYbkaL1QdFNXYckc-e91JlkTDK1_RZ-ZPN4z4e6cJXA_eWce3IQekHJW0o6dm6cOTdGg5DsETqmvG0rTgR_vL03bSV4w47QSUq3hNSklfQpOmKdYIQzcox-3oT7q9XnC6w9Xnmc3OhswHOE3tnsgsdT6GHEQ4h4hjm7HnAO9866_IDvnMbrqOcNdilMIc4blybsIf8I8VvCzmco4-z8-vA2wfcFvIVi1-OU42LzEqGgxWDSW8Nn6MmgxwTP9-cp-vrxw83lp-r6y9Xq8v11ZeuuzpVpjK2J7LhtLaeCk7ZvoJW8J8ZSQVlLOskGY6HmA4XyObSWhRaasYFrI9gperfTnRczQW_B56hHNUc36figgnbq74l3G7UOd4pSIQSXdVE42yvEUFKlrCaXLIyj9hCWpFixbIXknBf01T_obViiL_kKxUjXCClJod7sKBtDShGGwzaUqG3VqlSt9lUX-uWfAQ7s724L8HoHhGX-r9Iv5Nu2LQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130965880</pqid></control><display><type>article</type><title>ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><creator>Yu, Qiule ; Zhang, Zhixing ; Liu, Guixia ; Li, Weihua ; Tang, Yun</creator><creatorcontrib>Yu, Qiule ; Zhang, Zhixing ; Liu, Guixia ; Li, Weihua ; Tang, Yun</creatorcontrib><description>Abstract Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the 3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN.</description><identifier>ISSN: 1467-5463</identifier><identifier>ISSN: 1477-4054</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbae583</identifier><identifier>PMID: 39530430</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Amino acid composition ; Amino Acid Sequence ; Amino acids ; Computational Biology - methods ; Computer Simulation ; Correlation coefficient ; Correlation coefficients ; Drug development ; Feature extraction ; Graph theory ; Humans ; Information processing ; Isomorphism ; Modules ; Nodes ; Peptides ; Peptides - chemistry ; Prediction models ; Problem Solving Protocol ; Software ; Toxicity ; Toxicity testing</subject><ispartof>Briefings in bioinformatics, 2024-09, Vol.25 (6)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-b6bc20894c7c415407d6e784d0bc151370983fbce24f1eae51288945a33f4ab53</cites><orcidid>0000-0001-9648-844X ; 0000-0003-2340-1109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555482/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555482/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,1605,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39530430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Qiule</creatorcontrib><creatorcontrib>Zhang, Zhixing</creatorcontrib><creatorcontrib>Liu, Guixia</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Tang, Yun</creatorcontrib><title>ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the 3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN.</description><subject>Algorithms</subject><subject>Amino acid composition</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Drug development</subject><subject>Feature extraction</subject><subject>Graph theory</subject><subject>Humans</subject><subject>Information processing</subject><subject>Isomorphism</subject><subject>Modules</subject><subject>Nodes</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Prediction models</subject><subject>Problem Solving Protocol</subject><subject>Software</subject><subject>Toxicity</subject><subject>Toxicity testing</subject><issn>1467-5463</issn><issn>1477-4054</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU9rFTEUxYMo9o-u3EtAkIKMTSbJTKYbkaL1QdFNXYckc-e91JlkTDK1_RZ-ZPN4z4e6cJXA_eWce3IQekHJW0o6dm6cOTdGg5DsETqmvG0rTgR_vL03bSV4w47QSUq3hNSklfQpOmKdYIQzcox-3oT7q9XnC6w9Xnmc3OhswHOE3tnsgsdT6GHEQ4h4hjm7HnAO9866_IDvnMbrqOcNdilMIc4blybsIf8I8VvCzmco4-z8-vA2wfcFvIVi1-OU42LzEqGgxWDSW8Nn6MmgxwTP9-cp-vrxw83lp-r6y9Xq8v11ZeuuzpVpjK2J7LhtLaeCk7ZvoJW8J8ZSQVlLOskGY6HmA4XyObSWhRaasYFrI9gperfTnRczQW_B56hHNUc36figgnbq74l3G7UOd4pSIQSXdVE42yvEUFKlrCaXLIyj9hCWpFixbIXknBf01T_obViiL_kKxUjXCClJod7sKBtDShGGwzaUqG3VqlSt9lUX-uWfAQ7s724L8HoHhGX-r9Iv5Nu2LQ</recordid><startdate>20240923</startdate><enddate>20240923</enddate><creator>Yu, Qiule</creator><creator>Zhang, Zhixing</creator><creator>Liu, Guixia</creator><creator>Li, Weihua</creator><creator>Tang, Yun</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9648-844X</orcidid><orcidid>https://orcid.org/0000-0003-2340-1109</orcidid></search><sort><creationdate>20240923</creationdate><title>ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information</title><author>Yu, Qiule ; Zhang, Zhixing ; Liu, Guixia ; Li, Weihua ; Tang, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b6bc20894c7c415407d6e784d0bc151370983fbce24f1eae51288945a33f4ab53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Amino acid composition</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Drug development</topic><topic>Feature extraction</topic><topic>Graph theory</topic><topic>Humans</topic><topic>Information processing</topic><topic>Isomorphism</topic><topic>Modules</topic><topic>Nodes</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Prediction models</topic><topic>Problem Solving Protocol</topic><topic>Software</topic><topic>Toxicity</topic><topic>Toxicity testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Qiule</creatorcontrib><creatorcontrib>Zhang, Zhixing</creatorcontrib><creatorcontrib>Liu, Guixia</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Tang, Yun</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Qiule</au><au>Zhang, Zhixing</au><au>Liu, Guixia</au><au>Li, Weihua</au><au>Tang, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2024-09-23</date><risdate>2024</risdate><volume>25</volume><issue>6</issue><issn>1467-5463</issn><issn>1477-4054</issn><eissn>1477-4054</eissn><abstract>Abstract Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the 3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39530430</pmid><doi>10.1093/bib/bbae583</doi><orcidid>https://orcid.org/0000-0001-9648-844X</orcidid><orcidid>https://orcid.org/0000-0003-2340-1109</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2024-09, Vol.25 (6)
issn 1467-5463
1477-4054
1477-4054
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11555482
source MEDLINE; Access via Oxford University Press (Open Access Collection); PubMed Central
subjects Algorithms
Amino acid composition
Amino Acid Sequence
Amino acids
Computational Biology - methods
Computer Simulation
Correlation coefficient
Correlation coefficients
Drug development
Feature extraction
Graph theory
Humans
Information processing
Isomorphism
Modules
Nodes
Peptides
Peptides - chemistry
Prediction models
Problem Solving Protocol
Software
Toxicity
Toxicity testing
title ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ToxGIN:%20an%20In%20silico%20prediction%20model%20for%20peptide%20toxicity%20via%20graph%20isomorphism%20networks%20integrating%20peptide%20sequence%20and%20structure%20information&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Yu,%20Qiule&rft.date=2024-09-23&rft.volume=25&rft.issue=6&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbae583&rft_dat=%3Cproquest_pubme%3E3130965880%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130965880&rft_id=info:pmid/39530430&rft_oup_id=10.1093/bib/bbae583&rfr_iscdi=true