A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases

When challenged by starvation, bacterial organisms synthesize guanosine pentaphosphate and tetraphosphate, collectively denoted as (p)ppGpp, as second messengers to reprogram metabolism toward slower growth and enhanced stress tolerance. When starvation is alleviated, the RelA-SpoT Homolog (RSH) hyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2024-11, Vol.300 (11), p.107841, Article 107841
Hauptverfasser: Zhou, Rich W., Manisa, Berti, Wang, Boyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 107841
container_title The Journal of biological chemistry
container_volume 300
creator Zhou, Rich W.
Manisa, Berti
Wang, Boyuan
description When challenged by starvation, bacterial organisms synthesize guanosine pentaphosphate and tetraphosphate, collectively denoted as (p)ppGpp, as second messengers to reprogram metabolism toward slower growth and enhanced stress tolerance. When starvation is alleviated, the RelA-SpoT Homolog (RSH) hydrolases downregulate (p)ppGpp, cleaving the 3′-diphosphate to produce GTP or GDP. Metazoan RSH hydrolases possess phosphatase activity responsible for converting cytoplasmic NADPH to NADH in mammalian cells. Inhibitor development for this family may therefore provide therapies to combat bacterial infection or metabolic dysregulation. Despite the availability of dozens of high-resolution structures, catalytic mechanisms of RSH hydrolases have remained poorly understood. All RSH hydrolases tightly bind a Mn2+ near its active center, which is believed sufficient for hydrolase activity. In contrast to this notion, we demonstrate, using the (p)ppGpp hydrolase SpoT from Acinetobacter baumannii, that a second divalent cation, presumably a Mg2+ under physiological conditions, is required for efficient catalysis. We also show that SpoT preferentially cleaves 3′-diphosphate over 3′-phosphate substrates, likely due to a key coordination between the β-phosphate and the second metal center. Metazoan RSH hydrolase replaces this β-phosphate with the side chain of an aspartate residue, thereby functioning as a phosphatase. We propose a binuclear metallohydrolase model where an invariant ED (Glu-Asp) diad, previously believed to activate the water nucleophile, instead coordinates to a Mg2+ center. The refined molecular and evolutionary blueprint of RSH hydrolases will provide a more reliable foundation for the development of small-molecule inhibitors of this important enzyme family.
doi_str_mv 10.1016/j.jbc.2024.107841
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11554896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824023433</els_id><sourcerecordid>3112526370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3917bedd4843b92e25085b2c4cc4cddd7edf97cfe3269fc39ae9dbd29e16b29d3</originalsourceid><addsrcrecordid>eNp9kUtLLDEQhYNc0fHxA9xIL72LHlNJv4KLyyDqCILgA9yFdFKtGdKdMekR_Pc3MjroxlAQQn11KpxDyBHQKVCoThfTRaunjLIiveumgC0yAdrwnJfw9IdMKGWQC1Y2u2QvxgVNpxCwQ3a54GXdsGpCrmdZa4eVdqhC1uOonPMv7yZ4pyJmvTfoss6H7A7d7PR-6R_yue-988_Zyd39_G-2YeMB2e6Ui3j4ee-Tx8uLh_N5fnN7dX0-u8k1EzDmXEDdojFFU_BWMGQlbcqW6UKnMsbUaDpR6w45q0SnuVAoTGuYQKhaJgzfJ__WustV26PROIxBObkMtlfhXXpl5c_OYF_ks3-TAGVZNKJKCiefCsG_rjCOsrdRo3NqQL-KkgOwklW8pgmFNaqDjzFgt9kDVH5kIBcyZSA_MpDrDNLM8fcPbia-TE_A2RrAZNObxSCjtjhoNDagHqXx9hf5__8KmFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112526370</pqid></control><display><type>article</type><title>A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhou, Rich W. ; Manisa, Berti ; Wang, Boyuan</creator><creatorcontrib>Zhou, Rich W. ; Manisa, Berti ; Wang, Boyuan</creatorcontrib><description>When challenged by starvation, bacterial organisms synthesize guanosine pentaphosphate and tetraphosphate, collectively denoted as (p)ppGpp, as second messengers to reprogram metabolism toward slower growth and enhanced stress tolerance. When starvation is alleviated, the RelA-SpoT Homolog (RSH) hydrolases downregulate (p)ppGpp, cleaving the 3′-diphosphate to produce GTP or GDP. Metazoan RSH hydrolases possess phosphatase activity responsible for converting cytoplasmic NADPH to NADH in mammalian cells. Inhibitor development for this family may therefore provide therapies to combat bacterial infection or metabolic dysregulation. Despite the availability of dozens of high-resolution structures, catalytic mechanisms of RSH hydrolases have remained poorly understood. All RSH hydrolases tightly bind a Mn2+ near its active center, which is believed sufficient for hydrolase activity. In contrast to this notion, we demonstrate, using the (p)ppGpp hydrolase SpoT from Acinetobacter baumannii, that a second divalent cation, presumably a Mg2+ under physiological conditions, is required for efficient catalysis. We also show that SpoT preferentially cleaves 3′-diphosphate over 3′-phosphate substrates, likely due to a key coordination between the β-phosphate and the second metal center. Metazoan RSH hydrolase replaces this β-phosphate with the side chain of an aspartate residue, thereby functioning as a phosphatase. We propose a binuclear metallohydrolase model where an invariant ED (Glu-Asp) diad, previously believed to activate the water nucleophile, instead coordinates to a Mg2+ center. The refined molecular and evolutionary blueprint of RSH hydrolases will provide a more reliable foundation for the development of small-molecule inhibitors of this important enzyme family.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.107841</identifier><identifier>PMID: 39357826</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>(p)ppGpp ; Acinetobacter baumannii - enzymology ; Acinetobacter baumannii - genetics ; Acinetobacter baumannii - metabolism ; alarmone ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; catalysis ; enzymology ; hydrolase ; Magnesium - chemistry ; Magnesium - metabolism ; Manganese - chemistry ; Manganese - metabolism ; Mesh1 ; metal cofactor ; metallohydrolase ; Mg2 ; Mn2 ; ppGpp ; Pyrophosphatases - chemistry ; Pyrophosphatases - genetics ; Pyrophosphatases - metabolism ; second messenger ; SpoT ; stringent response</subject><ispartof>The Journal of biological chemistry, 2024-11, Vol.300 (11), p.107841, Article 107841</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-3917bedd4843b92e25085b2c4cc4cddd7edf97cfe3269fc39ae9dbd29e16b29d3</cites><orcidid>0009-0007-0838-2057 ; 0009-0002-2616-8111 ; 0000-0003-1854-6178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554896/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554896/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39357826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Rich W.</creatorcontrib><creatorcontrib>Manisa, Berti</creatorcontrib><creatorcontrib>Wang, Boyuan</creatorcontrib><title>A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>When challenged by starvation, bacterial organisms synthesize guanosine pentaphosphate and tetraphosphate, collectively denoted as (p)ppGpp, as second messengers to reprogram metabolism toward slower growth and enhanced stress tolerance. When starvation is alleviated, the RelA-SpoT Homolog (RSH) hydrolases downregulate (p)ppGpp, cleaving the 3′-diphosphate to produce GTP or GDP. Metazoan RSH hydrolases possess phosphatase activity responsible for converting cytoplasmic NADPH to NADH in mammalian cells. Inhibitor development for this family may therefore provide therapies to combat bacterial infection or metabolic dysregulation. Despite the availability of dozens of high-resolution structures, catalytic mechanisms of RSH hydrolases have remained poorly understood. All RSH hydrolases tightly bind a Mn2+ near its active center, which is believed sufficient for hydrolase activity. In contrast to this notion, we demonstrate, using the (p)ppGpp hydrolase SpoT from Acinetobacter baumannii, that a second divalent cation, presumably a Mg2+ under physiological conditions, is required for efficient catalysis. We also show that SpoT preferentially cleaves 3′-diphosphate over 3′-phosphate substrates, likely due to a key coordination between the β-phosphate and the second metal center. Metazoan RSH hydrolase replaces this β-phosphate with the side chain of an aspartate residue, thereby functioning as a phosphatase. We propose a binuclear metallohydrolase model where an invariant ED (Glu-Asp) diad, previously believed to activate the water nucleophile, instead coordinates to a Mg2+ center. The refined molecular and evolutionary blueprint of RSH hydrolases will provide a more reliable foundation for the development of small-molecule inhibitors of this important enzyme family.</description><subject>(p)ppGpp</subject><subject>Acinetobacter baumannii - enzymology</subject><subject>Acinetobacter baumannii - genetics</subject><subject>Acinetobacter baumannii - metabolism</subject><subject>alarmone</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>catalysis</subject><subject>enzymology</subject><subject>hydrolase</subject><subject>Magnesium - chemistry</subject><subject>Magnesium - metabolism</subject><subject>Manganese - chemistry</subject><subject>Manganese - metabolism</subject><subject>Mesh1</subject><subject>metal cofactor</subject><subject>metallohydrolase</subject><subject>Mg2</subject><subject>Mn2</subject><subject>ppGpp</subject><subject>Pyrophosphatases - chemistry</subject><subject>Pyrophosphatases - genetics</subject><subject>Pyrophosphatases - metabolism</subject><subject>second messenger</subject><subject>SpoT</subject><subject>stringent response</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLLDEQhYNc0fHxA9xIL72LHlNJv4KLyyDqCILgA9yFdFKtGdKdMekR_Pc3MjroxlAQQn11KpxDyBHQKVCoThfTRaunjLIiveumgC0yAdrwnJfw9IdMKGWQC1Y2u2QvxgVNpxCwQ3a54GXdsGpCrmdZa4eVdqhC1uOonPMv7yZ4pyJmvTfoss6H7A7d7PR-6R_yue-988_Zyd39_G-2YeMB2e6Ui3j4ee-Tx8uLh_N5fnN7dX0-u8k1EzDmXEDdojFFU_BWMGQlbcqW6UKnMsbUaDpR6w45q0SnuVAoTGuYQKhaJgzfJ__WustV26PROIxBObkMtlfhXXpl5c_OYF_ks3-TAGVZNKJKCiefCsG_rjCOsrdRo3NqQL-KkgOwklW8pgmFNaqDjzFgt9kDVH5kIBcyZSA_MpDrDNLM8fcPbia-TE_A2RrAZNObxSCjtjhoNDagHqXx9hf5__8KmFM</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Zhou, Rich W.</creator><creator>Manisa, Berti</creator><creator>Wang, Boyuan</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0007-0838-2057</orcidid><orcidid>https://orcid.org/0009-0002-2616-8111</orcidid><orcidid>https://orcid.org/0000-0003-1854-6178</orcidid></search><sort><creationdate>202411</creationdate><title>A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases</title><author>Zhou, Rich W. ; Manisa, Berti ; Wang, Boyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3917bedd4843b92e25085b2c4cc4cddd7edf97cfe3269fc39ae9dbd29e16b29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>(p)ppGpp</topic><topic>Acinetobacter baumannii - enzymology</topic><topic>Acinetobacter baumannii - genetics</topic><topic>Acinetobacter baumannii - metabolism</topic><topic>alarmone</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>catalysis</topic><topic>enzymology</topic><topic>hydrolase</topic><topic>Magnesium - chemistry</topic><topic>Magnesium - metabolism</topic><topic>Manganese - chemistry</topic><topic>Manganese - metabolism</topic><topic>Mesh1</topic><topic>metal cofactor</topic><topic>metallohydrolase</topic><topic>Mg2</topic><topic>Mn2</topic><topic>ppGpp</topic><topic>Pyrophosphatases - chemistry</topic><topic>Pyrophosphatases - genetics</topic><topic>Pyrophosphatases - metabolism</topic><topic>second messenger</topic><topic>SpoT</topic><topic>stringent response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Rich W.</creatorcontrib><creatorcontrib>Manisa, Berti</creatorcontrib><creatorcontrib>Wang, Boyuan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Rich W.</au><au>Manisa, Berti</au><au>Wang, Boyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-11</date><risdate>2024</risdate><volume>300</volume><issue>11</issue><spage>107841</spage><pages>107841-</pages><artnum>107841</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>When challenged by starvation, bacterial organisms synthesize guanosine pentaphosphate and tetraphosphate, collectively denoted as (p)ppGpp, as second messengers to reprogram metabolism toward slower growth and enhanced stress tolerance. When starvation is alleviated, the RelA-SpoT Homolog (RSH) hydrolases downregulate (p)ppGpp, cleaving the 3′-diphosphate to produce GTP or GDP. Metazoan RSH hydrolases possess phosphatase activity responsible for converting cytoplasmic NADPH to NADH in mammalian cells. Inhibitor development for this family may therefore provide therapies to combat bacterial infection or metabolic dysregulation. Despite the availability of dozens of high-resolution structures, catalytic mechanisms of RSH hydrolases have remained poorly understood. All RSH hydrolases tightly bind a Mn2+ near its active center, which is believed sufficient for hydrolase activity. In contrast to this notion, we demonstrate, using the (p)ppGpp hydrolase SpoT from Acinetobacter baumannii, that a second divalent cation, presumably a Mg2+ under physiological conditions, is required for efficient catalysis. We also show that SpoT preferentially cleaves 3′-diphosphate over 3′-phosphate substrates, likely due to a key coordination between the β-phosphate and the second metal center. Metazoan RSH hydrolase replaces this β-phosphate with the side chain of an aspartate residue, thereby functioning as a phosphatase. We propose a binuclear metallohydrolase model where an invariant ED (Glu-Asp) diad, previously believed to activate the water nucleophile, instead coordinates to a Mg2+ center. The refined molecular and evolutionary blueprint of RSH hydrolases will provide a more reliable foundation for the development of small-molecule inhibitors of this important enzyme family.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39357826</pmid><doi>10.1016/j.jbc.2024.107841</doi><orcidid>https://orcid.org/0009-0007-0838-2057</orcidid><orcidid>https://orcid.org/0009-0002-2616-8111</orcidid><orcidid>https://orcid.org/0000-0003-1854-6178</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2024-11, Vol.300 (11), p.107841, Article 107841
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11554896
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects (p)ppGpp
Acinetobacter baumannii - enzymology
Acinetobacter baumannii - genetics
Acinetobacter baumannii - metabolism
alarmone
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
catalysis
enzymology
hydrolase
Magnesium - chemistry
Magnesium - metabolism
Manganese - chemistry
Manganese - metabolism
Mesh1
metal cofactor
metallohydrolase
Mg2
Mn2
ppGpp
Pyrophosphatases - chemistry
Pyrophosphatases - genetics
Pyrophosphatases - metabolism
second messenger
SpoT
stringent response
title A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20binuclear%20metallohydrolase%20model%20for%20RelA/SpoT-Homolog%20(RSH)%20hydrolases&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Zhou,%20Rich%20W.&rft.date=2024-11&rft.volume=300&rft.issue=11&rft.spage=107841&rft.pages=107841-&rft.artnum=107841&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.107841&rft_dat=%3Cproquest_pubme%3E3112526370%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112526370&rft_id=info:pmid/39357826&rft_els_id=S0021925824023433&rfr_iscdi=true