A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases
When challenged by starvation, bacterial organisms synthesize guanosine pentaphosphate and tetraphosphate, collectively denoted as (p)ppGpp, as second messengers to reprogram metabolism toward slower growth and enhanced stress tolerance. When starvation is alleviated, the RelA-SpoT Homolog (RSH) hyd...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2024-11, Vol.300 (11), p.107841, Article 107841 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 107841 |
container_title | The Journal of biological chemistry |
container_volume | 300 |
creator | Zhou, Rich W. Manisa, Berti Wang, Boyuan |
description | When challenged by starvation, bacterial organisms synthesize guanosine pentaphosphate and tetraphosphate, collectively denoted as (p)ppGpp, as second messengers to reprogram metabolism toward slower growth and enhanced stress tolerance. When starvation is alleviated, the RelA-SpoT Homolog (RSH) hydrolases downregulate (p)ppGpp, cleaving the 3′-diphosphate to produce GTP or GDP. Metazoan RSH hydrolases possess phosphatase activity responsible for converting cytoplasmic NADPH to NADH in mammalian cells. Inhibitor development for this family may therefore provide therapies to combat bacterial infection or metabolic dysregulation. Despite the availability of dozens of high-resolution structures, catalytic mechanisms of RSH hydrolases have remained poorly understood. All RSH hydrolases tightly bind a Mn2+ near its active center, which is believed sufficient for hydrolase activity. In contrast to this notion, we demonstrate, using the (p)ppGpp hydrolase SpoT from Acinetobacter baumannii, that a second divalent cation, presumably a Mg2+ under physiological conditions, is required for efficient catalysis. We also show that SpoT preferentially cleaves 3′-diphosphate over 3′-phosphate substrates, likely due to a key coordination between the β-phosphate and the second metal center. Metazoan RSH hydrolase replaces this β-phosphate with the side chain of an aspartate residue, thereby functioning as a phosphatase. We propose a binuclear metallohydrolase model where an invariant ED (Glu-Asp) diad, previously believed to activate the water nucleophile, instead coordinates to a Mg2+ center. The refined molecular and evolutionary blueprint of RSH hydrolases will provide a more reliable foundation for the development of small-molecule inhibitors of this important enzyme family. |
doi_str_mv | 10.1016/j.jbc.2024.107841 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11554896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824023433</els_id><sourcerecordid>3112526370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3917bedd4843b92e25085b2c4cc4cddd7edf97cfe3269fc39ae9dbd29e16b29d3</originalsourceid><addsrcrecordid>eNp9kUtLLDEQhYNc0fHxA9xIL72LHlNJv4KLyyDqCILgA9yFdFKtGdKdMekR_Pc3MjroxlAQQn11KpxDyBHQKVCoThfTRaunjLIiveumgC0yAdrwnJfw9IdMKGWQC1Y2u2QvxgVNpxCwQ3a54GXdsGpCrmdZa4eVdqhC1uOonPMv7yZ4pyJmvTfoss6H7A7d7PR-6R_yue-988_Zyd39_G-2YeMB2e6Ui3j4ee-Tx8uLh_N5fnN7dX0-u8k1EzDmXEDdojFFU_BWMGQlbcqW6UKnMsbUaDpR6w45q0SnuVAoTGuYQKhaJgzfJ__WustV26PROIxBObkMtlfhXXpl5c_OYF_ks3-TAGVZNKJKCiefCsG_rjCOsrdRo3NqQL-KkgOwklW8pgmFNaqDjzFgt9kDVH5kIBcyZSA_MpDrDNLM8fcPbia-TE_A2RrAZNObxSCjtjhoNDagHqXx9hf5__8KmFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112526370</pqid></control><display><type>article</type><title>A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhou, Rich W. ; Manisa, Berti ; Wang, Boyuan</creator><creatorcontrib>Zhou, Rich W. ; Manisa, Berti ; Wang, Boyuan</creatorcontrib><description>When challenged by starvation, bacterial organisms synthesize guanosine pentaphosphate and tetraphosphate, collectively denoted as (p)ppGpp, as second messengers to reprogram metabolism toward slower growth and enhanced stress tolerance. When starvation is alleviated, the RelA-SpoT Homolog (RSH) hydrolases downregulate (p)ppGpp, cleaving the 3′-diphosphate to produce GTP or GDP. Metazoan RSH hydrolases possess phosphatase activity responsible for converting cytoplasmic NADPH to NADH in mammalian cells. Inhibitor development for this family may therefore provide therapies to combat bacterial infection or metabolic dysregulation. Despite the availability of dozens of high-resolution structures, catalytic mechanisms of RSH hydrolases have remained poorly understood. All RSH hydrolases tightly bind a Mn2+ near its active center, which is believed sufficient for hydrolase activity. In contrast to this notion, we demonstrate, using the (p)ppGpp hydrolase SpoT from Acinetobacter baumannii, that a second divalent cation, presumably a Mg2+ under physiological conditions, is required for efficient catalysis. We also show that SpoT preferentially cleaves 3′-diphosphate over 3′-phosphate substrates, likely due to a key coordination between the β-phosphate and the second metal center. Metazoan RSH hydrolase replaces this β-phosphate with the side chain of an aspartate residue, thereby functioning as a phosphatase. We propose a binuclear metallohydrolase model where an invariant ED (Glu-Asp) diad, previously believed to activate the water nucleophile, instead coordinates to a Mg2+ center. The refined molecular and evolutionary blueprint of RSH hydrolases will provide a more reliable foundation for the development of small-molecule inhibitors of this important enzyme family.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.107841</identifier><identifier>PMID: 39357826</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>(p)ppGpp ; Acinetobacter baumannii - enzymology ; Acinetobacter baumannii - genetics ; Acinetobacter baumannii - metabolism ; alarmone ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; catalysis ; enzymology ; hydrolase ; Magnesium - chemistry ; Magnesium - metabolism ; Manganese - chemistry ; Manganese - metabolism ; Mesh1 ; metal cofactor ; metallohydrolase ; Mg2 ; Mn2 ; ppGpp ; Pyrophosphatases - chemistry ; Pyrophosphatases - genetics ; Pyrophosphatases - metabolism ; second messenger ; SpoT ; stringent response</subject><ispartof>The Journal of biological chemistry, 2024-11, Vol.300 (11), p.107841, Article 107841</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-3917bedd4843b92e25085b2c4cc4cddd7edf97cfe3269fc39ae9dbd29e16b29d3</cites><orcidid>0009-0007-0838-2057 ; 0009-0002-2616-8111 ; 0000-0003-1854-6178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554896/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554896/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39357826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Rich W.</creatorcontrib><creatorcontrib>Manisa, Berti</creatorcontrib><creatorcontrib>Wang, Boyuan</creatorcontrib><title>A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>When challenged by starvation, bacterial organisms synthesize guanosine pentaphosphate and tetraphosphate, collectively denoted as (p)ppGpp, as second messengers to reprogram metabolism toward slower growth and enhanced stress tolerance. When starvation is alleviated, the RelA-SpoT Homolog (RSH) hydrolases downregulate (p)ppGpp, cleaving the 3′-diphosphate to produce GTP or GDP. Metazoan RSH hydrolases possess phosphatase activity responsible for converting cytoplasmic NADPH to NADH in mammalian cells. Inhibitor development for this family may therefore provide therapies to combat bacterial infection or metabolic dysregulation. Despite the availability of dozens of high-resolution structures, catalytic mechanisms of RSH hydrolases have remained poorly understood. All RSH hydrolases tightly bind a Mn2+ near its active center, which is believed sufficient for hydrolase activity. In contrast to this notion, we demonstrate, using the (p)ppGpp hydrolase SpoT from Acinetobacter baumannii, that a second divalent cation, presumably a Mg2+ under physiological conditions, is required for efficient catalysis. We also show that SpoT preferentially cleaves 3′-diphosphate over 3′-phosphate substrates, likely due to a key coordination between the β-phosphate and the second metal center. Metazoan RSH hydrolase replaces this β-phosphate with the side chain of an aspartate residue, thereby functioning as a phosphatase. We propose a binuclear metallohydrolase model where an invariant ED (Glu-Asp) diad, previously believed to activate the water nucleophile, instead coordinates to a Mg2+ center. The refined molecular and evolutionary blueprint of RSH hydrolases will provide a more reliable foundation for the development of small-molecule inhibitors of this important enzyme family.</description><subject>(p)ppGpp</subject><subject>Acinetobacter baumannii - enzymology</subject><subject>Acinetobacter baumannii - genetics</subject><subject>Acinetobacter baumannii - metabolism</subject><subject>alarmone</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>catalysis</subject><subject>enzymology</subject><subject>hydrolase</subject><subject>Magnesium - chemistry</subject><subject>Magnesium - metabolism</subject><subject>Manganese - chemistry</subject><subject>Manganese - metabolism</subject><subject>Mesh1</subject><subject>metal cofactor</subject><subject>metallohydrolase</subject><subject>Mg2</subject><subject>Mn2</subject><subject>ppGpp</subject><subject>Pyrophosphatases - chemistry</subject><subject>Pyrophosphatases - genetics</subject><subject>Pyrophosphatases - metabolism</subject><subject>second messenger</subject><subject>SpoT</subject><subject>stringent response</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLLDEQhYNc0fHxA9xIL72LHlNJv4KLyyDqCILgA9yFdFKtGdKdMekR_Pc3MjroxlAQQn11KpxDyBHQKVCoThfTRaunjLIiveumgC0yAdrwnJfw9IdMKGWQC1Y2u2QvxgVNpxCwQ3a54GXdsGpCrmdZa4eVdqhC1uOonPMv7yZ4pyJmvTfoss6H7A7d7PR-6R_yue-988_Zyd39_G-2YeMB2e6Ui3j4ee-Tx8uLh_N5fnN7dX0-u8k1EzDmXEDdojFFU_BWMGQlbcqW6UKnMsbUaDpR6w45q0SnuVAoTGuYQKhaJgzfJ__WustV26PROIxBObkMtlfhXXpl5c_OYF_ks3-TAGVZNKJKCiefCsG_rjCOsrdRo3NqQL-KkgOwklW8pgmFNaqDjzFgt9kDVH5kIBcyZSA_MpDrDNLM8fcPbia-TE_A2RrAZNObxSCjtjhoNDagHqXx9hf5__8KmFM</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Zhou, Rich W.</creator><creator>Manisa, Berti</creator><creator>Wang, Boyuan</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0007-0838-2057</orcidid><orcidid>https://orcid.org/0009-0002-2616-8111</orcidid><orcidid>https://orcid.org/0000-0003-1854-6178</orcidid></search><sort><creationdate>202411</creationdate><title>A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases</title><author>Zhou, Rich W. ; Manisa, Berti ; Wang, Boyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3917bedd4843b92e25085b2c4cc4cddd7edf97cfe3269fc39ae9dbd29e16b29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>(p)ppGpp</topic><topic>Acinetobacter baumannii - enzymology</topic><topic>Acinetobacter baumannii - genetics</topic><topic>Acinetobacter baumannii - metabolism</topic><topic>alarmone</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>catalysis</topic><topic>enzymology</topic><topic>hydrolase</topic><topic>Magnesium - chemistry</topic><topic>Magnesium - metabolism</topic><topic>Manganese - chemistry</topic><topic>Manganese - metabolism</topic><topic>Mesh1</topic><topic>metal cofactor</topic><topic>metallohydrolase</topic><topic>Mg2</topic><topic>Mn2</topic><topic>ppGpp</topic><topic>Pyrophosphatases - chemistry</topic><topic>Pyrophosphatases - genetics</topic><topic>Pyrophosphatases - metabolism</topic><topic>second messenger</topic><topic>SpoT</topic><topic>stringent response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Rich W.</creatorcontrib><creatorcontrib>Manisa, Berti</creatorcontrib><creatorcontrib>Wang, Boyuan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Rich W.</au><au>Manisa, Berti</au><au>Wang, Boyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-11</date><risdate>2024</risdate><volume>300</volume><issue>11</issue><spage>107841</spage><pages>107841-</pages><artnum>107841</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>When challenged by starvation, bacterial organisms synthesize guanosine pentaphosphate and tetraphosphate, collectively denoted as (p)ppGpp, as second messengers to reprogram metabolism toward slower growth and enhanced stress tolerance. When starvation is alleviated, the RelA-SpoT Homolog (RSH) hydrolases downregulate (p)ppGpp, cleaving the 3′-diphosphate to produce GTP or GDP. Metazoan RSH hydrolases possess phosphatase activity responsible for converting cytoplasmic NADPH to NADH in mammalian cells. Inhibitor development for this family may therefore provide therapies to combat bacterial infection or metabolic dysregulation. Despite the availability of dozens of high-resolution structures, catalytic mechanisms of RSH hydrolases have remained poorly understood. All RSH hydrolases tightly bind a Mn2+ near its active center, which is believed sufficient for hydrolase activity. In contrast to this notion, we demonstrate, using the (p)ppGpp hydrolase SpoT from Acinetobacter baumannii, that a second divalent cation, presumably a Mg2+ under physiological conditions, is required for efficient catalysis. We also show that SpoT preferentially cleaves 3′-diphosphate over 3′-phosphate substrates, likely due to a key coordination between the β-phosphate and the second metal center. Metazoan RSH hydrolase replaces this β-phosphate with the side chain of an aspartate residue, thereby functioning as a phosphatase. We propose a binuclear metallohydrolase model where an invariant ED (Glu-Asp) diad, previously believed to activate the water nucleophile, instead coordinates to a Mg2+ center. The refined molecular and evolutionary blueprint of RSH hydrolases will provide a more reliable foundation for the development of small-molecule inhibitors of this important enzyme family.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39357826</pmid><doi>10.1016/j.jbc.2024.107841</doi><orcidid>https://orcid.org/0009-0007-0838-2057</orcidid><orcidid>https://orcid.org/0009-0002-2616-8111</orcidid><orcidid>https://orcid.org/0000-0003-1854-6178</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2024-11, Vol.300 (11), p.107841, Article 107841 |
issn | 0021-9258 1083-351X 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11554896 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | (p)ppGpp Acinetobacter baumannii - enzymology Acinetobacter baumannii - genetics Acinetobacter baumannii - metabolism alarmone Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism catalysis enzymology hydrolase Magnesium - chemistry Magnesium - metabolism Manganese - chemistry Manganese - metabolism Mesh1 metal cofactor metallohydrolase Mg2 Mn2 ppGpp Pyrophosphatases - chemistry Pyrophosphatases - genetics Pyrophosphatases - metabolism second messenger SpoT stringent response |
title | A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20binuclear%20metallohydrolase%20model%20for%20RelA/SpoT-Homolog%20(RSH)%20hydrolases&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Zhou,%20Rich%20W.&rft.date=2024-11&rft.volume=300&rft.issue=11&rft.spage=107841&rft.pages=107841-&rft.artnum=107841&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.107841&rft_dat=%3Cproquest_pubme%3E3112526370%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112526370&rft_id=info:pmid/39357826&rft_els_id=S0021925824023433&rfr_iscdi=true |