Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling
Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained m...
Gespeichert in:
Veröffentlicht in: | Biomechanics and modeling in mechanobiology 2024-12, Vol.23 (6), p.2115-2136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2136 |
---|---|
container_issue | 6 |
container_start_page | 2115 |
container_title | Biomechanics and modeling in mechanobiology |
container_volume | 23 |
creator | Paukner, Daniel Humphrey, Jay D. Cyron, Christian J. |
description | Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects. Here, we propose such a version that resolves cellular signal processing by a set of logic-gated ordinary differential equations and captures chemo-mechanical interactions between cells by coupling a reaction-diffusion equation with the equations of nonlinear continuum mechanics. To demonstrate the potential of the model, we present 2 case studies within vascular solid mechanics: (i) the influence of angiotensin II on aortic growth and remodeling and (ii) the effect of communication between endothelial and intramural arterial cells via nitric oxide and endothelin-1. |
doi_str_mv | 10.1007/s10237-024-01884-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11554721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117994496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-ea39fafe734e5c0df3f1f0cf3cbea583e1d37d4af61de0e4831c136b3a2c01f63</originalsourceid><addsrcrecordid>eNp9UUtv1DAQjhAVLYU_wAFZ4sLF1JNxXieEKl5SKy5wtrzOOHGV2IudsMCvx9stC-XAySN9j5nPX1E8A_EKhGguEogSGy5KyQW0reS7B8UZ1NDwppPi4XGuutPicUo3QpQCW3xUnGInoWtldVZsr9dpccnoidgY5jCQdz-pZyb4tETtfJ5n931ZI7E59DSxYNkyEtu4wM1Ic-AzmVF7Z9IeSsEuLBumldgQw24ZmfY9i3Qrdn54UpxYPSV6eveeF1_evf18-YFffXr_8fLNFTdY1QsnjZ3VlhqUVBnRW7RghbFoNqSrFgl6bHqpbQ09CZItggGsN6hLI8DWeF68Pvhu181MvSGf40xqG92s4w8VtFP3Ee9GNYRvCqCqZFNCdnh55xDD15XSoub8UTRN2lNYk0KApuuk7PbLXvxDvQlr9DlfZpV1W2IlRWaVB5aJIaVI9ngNCLVvVB0aVblRdduo2mXR879zHCW_K8wEPBBShvxA8c_u_9j-AizhsHY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126823540</pqid></control><display><type>article</type><title>Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Paukner, Daniel ; Humphrey, Jay D. ; Cyron, Christian J.</creator><creatorcontrib>Paukner, Daniel ; Humphrey, Jay D. ; Cyron, Christian J.</creatorcontrib><description>Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects. Here, we propose such a version that resolves cellular signal processing by a set of logic-gated ordinary differential equations and captures chemo-mechanical interactions between cells by coupling a reaction-diffusion equation with the equations of nonlinear continuum mechanics. To demonstrate the potential of the model, we present 2 case studies within vascular solid mechanics: (i) the influence of angiotensin II on aortic growth and remodeling and (ii) the effect of communication between endothelial and intramural arterial cells via nitric oxide and endothelin-1.</description><identifier>ISSN: 1617-7959</identifier><identifier>ISSN: 1617-7940</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-024-01884-w</identifier><identifier>PMID: 39419845</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angiotensin ; Angiotensin II ; Angiotensin II - pharmacology ; Animals ; Aorta ; Biological and Medical Physics ; Biological models (mathematics) ; Biomechanical Phenomena ; Biomedical Engineering and Bioengineering ; Biophysics ; Cell interactions ; Computer Simulation ; Constraints ; Continuum mechanics ; Coupling ; Deformation ; Differential equations ; Endothelin 1 ; Endothelin-1 - metabolism ; Engineering ; Fibroblasts ; Homeostasis ; Humans ; Intracellular signalling ; Mechanical properties ; Mechanical stimuli ; Mechanics ; Models, Biological ; Nitric oxide ; Nitric Oxide - metabolism ; Ordinary differential equations ; Original Paper ; Reaction-diffusion equations ; Signal processing ; Smooth muscle ; Soft tissues ; Solid mechanics ; Theoretical and Applied Mechanics ; Vascular Remodeling - drug effects</subject><ispartof>Biomechanics and modeling in mechanobiology, 2024-12, Vol.23 (6), p.2115-2136</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-ea39fafe734e5c0df3f1f0cf3cbea583e1d37d4af61de0e4831c136b3a2c01f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10237-024-01884-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10237-024-01884-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39419845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paukner, Daniel</creatorcontrib><creatorcontrib>Humphrey, Jay D.</creatorcontrib><creatorcontrib>Cyron, Christian J.</creatorcontrib><title>Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects. Here, we propose such a version that resolves cellular signal processing by a set of logic-gated ordinary differential equations and captures chemo-mechanical interactions between cells by coupling a reaction-diffusion equation with the equations of nonlinear continuum mechanics. To demonstrate the potential of the model, we present 2 case studies within vascular solid mechanics: (i) the influence of angiotensin II on aortic growth and remodeling and (ii) the effect of communication between endothelial and intramural arterial cells via nitric oxide and endothelin-1.</description><subject>Angiotensin</subject><subject>Angiotensin II</subject><subject>Angiotensin II - pharmacology</subject><subject>Animals</subject><subject>Aorta</subject><subject>Biological and Medical Physics</subject><subject>Biological models (mathematics)</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Cell interactions</subject><subject>Computer Simulation</subject><subject>Constraints</subject><subject>Continuum mechanics</subject><subject>Coupling</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Endothelin 1</subject><subject>Endothelin-1 - metabolism</subject><subject>Engineering</subject><subject>Fibroblasts</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Intracellular signalling</subject><subject>Mechanical properties</subject><subject>Mechanical stimuli</subject><subject>Mechanics</subject><subject>Models, Biological</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Reaction-diffusion equations</subject><subject>Signal processing</subject><subject>Smooth muscle</subject><subject>Soft tissues</subject><subject>Solid mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vascular Remodeling - drug effects</subject><issn>1617-7959</issn><issn>1617-7940</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9UUtv1DAQjhAVLYU_wAFZ4sLF1JNxXieEKl5SKy5wtrzOOHGV2IudsMCvx9stC-XAySN9j5nPX1E8A_EKhGguEogSGy5KyQW0reS7B8UZ1NDwppPi4XGuutPicUo3QpQCW3xUnGInoWtldVZsr9dpccnoidgY5jCQdz-pZyb4tETtfJ5n931ZI7E59DSxYNkyEtu4wM1Ic-AzmVF7Z9IeSsEuLBumldgQw24ZmfY9i3Qrdn54UpxYPSV6eveeF1_evf18-YFffXr_8fLNFTdY1QsnjZ3VlhqUVBnRW7RghbFoNqSrFgl6bHqpbQ09CZItggGsN6hLI8DWeF68Pvhu181MvSGf40xqG92s4w8VtFP3Ee9GNYRvCqCqZFNCdnh55xDD15XSoub8UTRN2lNYk0KApuuk7PbLXvxDvQlr9DlfZpV1W2IlRWaVB5aJIaVI9ngNCLVvVB0aVblRdduo2mXR879zHCW_K8wEPBBShvxA8c_u_9j-AizhsHY</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Paukner, Daniel</creator><creator>Humphrey, Jay D.</creator><creator>Cyron, Christian J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202412</creationdate><title>Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling</title><author>Paukner, Daniel ; Humphrey, Jay D. ; Cyron, Christian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-ea39fafe734e5c0df3f1f0cf3cbea583e1d37d4af61de0e4831c136b3a2c01f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angiotensin</topic><topic>Angiotensin II</topic><topic>Angiotensin II - pharmacology</topic><topic>Animals</topic><topic>Aorta</topic><topic>Biological and Medical Physics</topic><topic>Biological models (mathematics)</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Cell interactions</topic><topic>Computer Simulation</topic><topic>Constraints</topic><topic>Continuum mechanics</topic><topic>Coupling</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Endothelin 1</topic><topic>Endothelin-1 - metabolism</topic><topic>Engineering</topic><topic>Fibroblasts</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Intracellular signalling</topic><topic>Mechanical properties</topic><topic>Mechanical stimuli</topic><topic>Mechanics</topic><topic>Models, Biological</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Reaction-diffusion equations</topic><topic>Signal processing</topic><topic>Smooth muscle</topic><topic>Soft tissues</topic><topic>Solid mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vascular Remodeling - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paukner, Daniel</creatorcontrib><creatorcontrib>Humphrey, Jay D.</creatorcontrib><creatorcontrib>Cyron, Christian J.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paukner, Daniel</au><au>Humphrey, Jay D.</au><au>Cyron, Christian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>23</volume><issue>6</issue><spage>2115</spage><epage>2136</epage><pages>2115-2136</pages><issn>1617-7959</issn><issn>1617-7940</issn><eissn>1617-7940</eissn><abstract>Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects. Here, we propose such a version that resolves cellular signal processing by a set of logic-gated ordinary differential equations and captures chemo-mechanical interactions between cells by coupling a reaction-diffusion equation with the equations of nonlinear continuum mechanics. To demonstrate the potential of the model, we present 2 case studies within vascular solid mechanics: (i) the influence of angiotensin II on aortic growth and remodeling and (ii) the effect of communication between endothelial and intramural arterial cells via nitric oxide and endothelin-1.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39419845</pmid><doi>10.1007/s10237-024-01884-w</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7959 |
ispartof | Biomechanics and modeling in mechanobiology, 2024-12, Vol.23 (6), p.2115-2136 |
issn | 1617-7959 1617-7940 1617-7940 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11554721 |
source | MEDLINE; SpringerNature Journals |
subjects | Angiotensin Angiotensin II Angiotensin II - pharmacology Animals Aorta Biological and Medical Physics Biological models (mathematics) Biomechanical Phenomena Biomedical Engineering and Bioengineering Biophysics Cell interactions Computer Simulation Constraints Continuum mechanics Coupling Deformation Differential equations Endothelin 1 Endothelin-1 - metabolism Engineering Fibroblasts Homeostasis Humans Intracellular signalling Mechanical properties Mechanical stimuli Mechanics Models, Biological Nitric oxide Nitric Oxide - metabolism Ordinary differential equations Original Paper Reaction-diffusion equations Signal processing Smooth muscle Soft tissues Solid mechanics Theoretical and Applied Mechanics Vascular Remodeling - drug effects |
title | Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20homogenized%20constrained%20mixture%20model%20of%20the%20bio-chemo-mechanics%20of%20soft%20tissue%20growth%20and%20remodeling&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Paukner,%20Daniel&rft.date=2024-12&rft.volume=23&rft.issue=6&rft.spage=2115&rft.epage=2136&rft.pages=2115-2136&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-024-01884-w&rft_dat=%3Cproquest_pubme%3E3117994496%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126823540&rft_id=info:pmid/39419845&rfr_iscdi=true |