Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling

Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomechanics and modeling in mechanobiology 2024-12, Vol.23 (6), p.2115-2136
Hauptverfasser: Paukner, Daniel, Humphrey, Jay D., Cyron, Christian J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2136
container_issue 6
container_start_page 2115
container_title Biomechanics and modeling in mechanobiology
container_volume 23
creator Paukner, Daniel
Humphrey, Jay D.
Cyron, Christian J.
description Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects. Here, we propose such a version that resolves cellular signal processing by a set of logic-gated ordinary differential equations and captures chemo-mechanical interactions between cells by coupling a reaction-diffusion equation with the equations of nonlinear continuum mechanics. To demonstrate the potential of the model, we present 2 case studies within vascular solid mechanics: (i) the influence of angiotensin II on aortic growth and remodeling and (ii) the effect of communication between endothelial and intramural arterial cells via nitric oxide and endothelin-1.
doi_str_mv 10.1007/s10237-024-01884-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11554721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117994496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-ea39fafe734e5c0df3f1f0cf3cbea583e1d37d4af61de0e4831c136b3a2c01f63</originalsourceid><addsrcrecordid>eNp9UUtv1DAQjhAVLYU_wAFZ4sLF1JNxXieEKl5SKy5wtrzOOHGV2IudsMCvx9stC-XAySN9j5nPX1E8A_EKhGguEogSGy5KyQW0reS7B8UZ1NDwppPi4XGuutPicUo3QpQCW3xUnGInoWtldVZsr9dpccnoidgY5jCQdz-pZyb4tETtfJ5n931ZI7E59DSxYNkyEtu4wM1Ic-AzmVF7Z9IeSsEuLBumldgQw24ZmfY9i3Qrdn54UpxYPSV6eveeF1_evf18-YFffXr_8fLNFTdY1QsnjZ3VlhqUVBnRW7RghbFoNqSrFgl6bHqpbQ09CZItggGsN6hLI8DWeF68Pvhu181MvSGf40xqG92s4w8VtFP3Ee9GNYRvCqCqZFNCdnh55xDD15XSoub8UTRN2lNYk0KApuuk7PbLXvxDvQlr9DlfZpV1W2IlRWaVB5aJIaVI9ngNCLVvVB0aVblRdduo2mXR879zHCW_K8wEPBBShvxA8c_u_9j-AizhsHY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126823540</pqid></control><display><type>article</type><title>Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Paukner, Daniel ; Humphrey, Jay D. ; Cyron, Christian J.</creator><creatorcontrib>Paukner, Daniel ; Humphrey, Jay D. ; Cyron, Christian J.</creatorcontrib><description>Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects. Here, we propose such a version that resolves cellular signal processing by a set of logic-gated ordinary differential equations and captures chemo-mechanical interactions between cells by coupling a reaction-diffusion equation with the equations of nonlinear continuum mechanics. To demonstrate the potential of the model, we present 2 case studies within vascular solid mechanics: (i) the influence of angiotensin II on aortic growth and remodeling and (ii) the effect of communication between endothelial and intramural arterial cells via nitric oxide and endothelin-1.</description><identifier>ISSN: 1617-7959</identifier><identifier>ISSN: 1617-7940</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-024-01884-w</identifier><identifier>PMID: 39419845</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angiotensin ; Angiotensin II ; Angiotensin II - pharmacology ; Animals ; Aorta ; Biological and Medical Physics ; Biological models (mathematics) ; Biomechanical Phenomena ; Biomedical Engineering and Bioengineering ; Biophysics ; Cell interactions ; Computer Simulation ; Constraints ; Continuum mechanics ; Coupling ; Deformation ; Differential equations ; Endothelin 1 ; Endothelin-1 - metabolism ; Engineering ; Fibroblasts ; Homeostasis ; Humans ; Intracellular signalling ; Mechanical properties ; Mechanical stimuli ; Mechanics ; Models, Biological ; Nitric oxide ; Nitric Oxide - metabolism ; Ordinary differential equations ; Original Paper ; Reaction-diffusion equations ; Signal processing ; Smooth muscle ; Soft tissues ; Solid mechanics ; Theoretical and Applied Mechanics ; Vascular Remodeling - drug effects</subject><ispartof>Biomechanics and modeling in mechanobiology, 2024-12, Vol.23 (6), p.2115-2136</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-ea39fafe734e5c0df3f1f0cf3cbea583e1d37d4af61de0e4831c136b3a2c01f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10237-024-01884-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10237-024-01884-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39419845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paukner, Daniel</creatorcontrib><creatorcontrib>Humphrey, Jay D.</creatorcontrib><creatorcontrib>Cyron, Christian J.</creatorcontrib><title>Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects. Here, we propose such a version that resolves cellular signal processing by a set of logic-gated ordinary differential equations and captures chemo-mechanical interactions between cells by coupling a reaction-diffusion equation with the equations of nonlinear continuum mechanics. To demonstrate the potential of the model, we present 2 case studies within vascular solid mechanics: (i) the influence of angiotensin II on aortic growth and remodeling and (ii) the effect of communication between endothelial and intramural arterial cells via nitric oxide and endothelin-1.</description><subject>Angiotensin</subject><subject>Angiotensin II</subject><subject>Angiotensin II - pharmacology</subject><subject>Animals</subject><subject>Aorta</subject><subject>Biological and Medical Physics</subject><subject>Biological models (mathematics)</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Cell interactions</subject><subject>Computer Simulation</subject><subject>Constraints</subject><subject>Continuum mechanics</subject><subject>Coupling</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Endothelin 1</subject><subject>Endothelin-1 - metabolism</subject><subject>Engineering</subject><subject>Fibroblasts</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Intracellular signalling</subject><subject>Mechanical properties</subject><subject>Mechanical stimuli</subject><subject>Mechanics</subject><subject>Models, Biological</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Reaction-diffusion equations</subject><subject>Signal processing</subject><subject>Smooth muscle</subject><subject>Soft tissues</subject><subject>Solid mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vascular Remodeling - drug effects</subject><issn>1617-7959</issn><issn>1617-7940</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9UUtv1DAQjhAVLYU_wAFZ4sLF1JNxXieEKl5SKy5wtrzOOHGV2IudsMCvx9stC-XAySN9j5nPX1E8A_EKhGguEogSGy5KyQW0reS7B8UZ1NDwppPi4XGuutPicUo3QpQCW3xUnGInoWtldVZsr9dpccnoidgY5jCQdz-pZyb4tETtfJ5n931ZI7E59DSxYNkyEtu4wM1Ic-AzmVF7Z9IeSsEuLBumldgQw24ZmfY9i3Qrdn54UpxYPSV6eveeF1_evf18-YFffXr_8fLNFTdY1QsnjZ3VlhqUVBnRW7RghbFoNqSrFgl6bHqpbQ09CZItggGsN6hLI8DWeF68Pvhu181MvSGf40xqG92s4w8VtFP3Ee9GNYRvCqCqZFNCdnh55xDD15XSoub8UTRN2lNYk0KApuuk7PbLXvxDvQlr9DlfZpV1W2IlRWaVB5aJIaVI9ngNCLVvVB0aVblRdduo2mXR879zHCW_K8wEPBBShvxA8c_u_9j-AizhsHY</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Paukner, Daniel</creator><creator>Humphrey, Jay D.</creator><creator>Cyron, Christian J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202412</creationdate><title>Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling</title><author>Paukner, Daniel ; Humphrey, Jay D. ; Cyron, Christian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-ea39fafe734e5c0df3f1f0cf3cbea583e1d37d4af61de0e4831c136b3a2c01f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angiotensin</topic><topic>Angiotensin II</topic><topic>Angiotensin II - pharmacology</topic><topic>Animals</topic><topic>Aorta</topic><topic>Biological and Medical Physics</topic><topic>Biological models (mathematics)</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Cell interactions</topic><topic>Computer Simulation</topic><topic>Constraints</topic><topic>Continuum mechanics</topic><topic>Coupling</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Endothelin 1</topic><topic>Endothelin-1 - metabolism</topic><topic>Engineering</topic><topic>Fibroblasts</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Intracellular signalling</topic><topic>Mechanical properties</topic><topic>Mechanical stimuli</topic><topic>Mechanics</topic><topic>Models, Biological</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Reaction-diffusion equations</topic><topic>Signal processing</topic><topic>Smooth muscle</topic><topic>Soft tissues</topic><topic>Solid mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vascular Remodeling - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paukner, Daniel</creatorcontrib><creatorcontrib>Humphrey, Jay D.</creatorcontrib><creatorcontrib>Cyron, Christian J.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paukner, Daniel</au><au>Humphrey, Jay D.</au><au>Cyron, Christian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>23</volume><issue>6</issue><spage>2115</spage><epage>2136</epage><pages>2115-2136</pages><issn>1617-7959</issn><issn>1617-7940</issn><eissn>1617-7940</eissn><abstract>Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects. Here, we propose such a version that resolves cellular signal processing by a set of logic-gated ordinary differential equations and captures chemo-mechanical interactions between cells by coupling a reaction-diffusion equation with the equations of nonlinear continuum mechanics. To demonstrate the potential of the model, we present 2 case studies within vascular solid mechanics: (i) the influence of angiotensin II on aortic growth and remodeling and (ii) the effect of communication between endothelial and intramural arterial cells via nitric oxide and endothelin-1.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39419845</pmid><doi>10.1007/s10237-024-01884-w</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7959
ispartof Biomechanics and modeling in mechanobiology, 2024-12, Vol.23 (6), p.2115-2136
issn 1617-7959
1617-7940
1617-7940
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11554721
source MEDLINE; SpringerNature Journals
subjects Angiotensin
Angiotensin II
Angiotensin II - pharmacology
Animals
Aorta
Biological and Medical Physics
Biological models (mathematics)
Biomechanical Phenomena
Biomedical Engineering and Bioengineering
Biophysics
Cell interactions
Computer Simulation
Constraints
Continuum mechanics
Coupling
Deformation
Differential equations
Endothelin 1
Endothelin-1 - metabolism
Engineering
Fibroblasts
Homeostasis
Humans
Intracellular signalling
Mechanical properties
Mechanical stimuli
Mechanics
Models, Biological
Nitric oxide
Nitric Oxide - metabolism
Ordinary differential equations
Original Paper
Reaction-diffusion equations
Signal processing
Smooth muscle
Soft tissues
Solid mechanics
Theoretical and Applied Mechanics
Vascular Remodeling - drug effects
title Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20homogenized%20constrained%20mixture%20model%20of%20the%20bio-chemo-mechanics%20of%20soft%20tissue%20growth%20and%20remodeling&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Paukner,%20Daniel&rft.date=2024-12&rft.volume=23&rft.issue=6&rft.spage=2115&rft.epage=2136&rft.pages=2115-2136&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-024-01884-w&rft_dat=%3Cproquest_pubme%3E3117994496%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126823540&rft_id=info:pmid/39419845&rfr_iscdi=true