Prediction of human O-linked glycosylation sites using stacked generalization and embeddings from pre-trained protein language model
Abstract Motivation O-linked glycosylation, an essential post-translational modification process in Homo sapiens, involves attaching sugar moieties to the oxygen atoms of serine and/or threonine residues. It influences various biological and cellular functions. While threonine or serine residues wit...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2024-11, Vol.40 (11) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Bioinformatics (Oxford, England) |
container_volume | 40 |
creator | Pakhrin, Subash Chandra Chauhan, Neha Khan, Salman Upadhyaya, Jamie Beck, Moriah Rene Blanco, Eduardo |
description | Abstract
Motivation
O-linked glycosylation, an essential post-translational modification process in Homo sapiens, involves attaching sugar moieties to the oxygen atoms of serine and/or threonine residues. It influences various biological and cellular functions. While threonine or serine residues within protein sequences are potential sites for O-linked glycosylation, not all serine and/or threonine residues undergo this modification, underscoring the importance of characterizing its occurrence. This study presents a novel approach for predicting intracellular and extracellular O-linked glycosylation events on proteins, which are crucial for comprehending cellular processes. Two base multi-layer perceptron models were trained by leveraging a stacked generalization framework. These base models respectively use ProtT5 and Ankh O-linked glycosylation site-specific embeddings whose combined predictions are used to train the meta-multi-layer perceptron model. Trained on extensive O-linked glycosylation datasets, the stacked-generalization model demonstrated high predictive performance on independent test datasets. Furthermore, the study emphasizes the distinction between nucleocytoplasmic and extracellular O-linked glycosylation, offering insights into their functional implications that were overlooked in previous studies. By integrating the protein language model’s embedding with stacked generalization techniques, this approach enhances predictive accuracy of O-linked glycosylation events and illuminates the intricate roles of O-linked glycosylation in proteomics, potentially accelerating the discovery of novel glycosylation sites.
Results
Stack-OglyPred-PLM produces Sensitivity, Specificity, Matthews Correlation Coefficient, and Accuracy of 90.50%, 89.60%, 0.464, and 89.70%, respectively on a benchmark NetOGlyc-4.0 independent test dataset. These results demonstrate that Stack-OglyPred-PLM is a robust computational tool to predict O-linked glycosylation sites in proteins.
Availability and implementation
The developed tool, programs, training, and test dataset are available at https://github.com/PakhrinLab/Stack-OglyPred-PLM. |
doi_str_mv | 10.1093/bioinformatics/btae643 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11552629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btae643</oup_id><sourcerecordid>3120593667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-c3f71a8b17ad89e1fa8ebba84331b4d059dae94609754dc551fa44182f500de13</originalsourceid><addsrcrecordid>eNqNkc1rFTEUxYNYbG39F0rAjZuxycvHzKxEil9QqIt2HTLJnWlqJhmTTOG59g837XuW1pWb3MD93cM5HIROKXlPSc_OBhddGGOadXEmnw1Fg-TsBTqiTLYN7yh9-eR_iF7nfEsIEUTIV-iQ9Zy3RPRH6Pf3BNaZ4mLAccQ366wDvmy8Cz_A4slvTcxbrx_22RXIeM0uTDgXbR4ICJC0d792iA4WwzyAtRXKeExxxkuCpiTtQsWXFAu4gL0O06onwHO04E_Qwah9hjf7eYyuP3-6Ov_aXFx--Xb-8aIxjPJS37Gluhtoq23XAx11B8OgO84YHbiteayGnkvSt4JbI0QlOKfdZhSEWKDsGH3Y6S7rMIM1EKovr5bkZp22Kmqnnm-Cu1FTvFOUCrGRm74qvNsrpPhzhVzU7LIBX_NAXLNidFNtMCnbir79B72Nawo13z3VEcoEk5WSO8qkmHOC8dENJeq-afW8abVvuh6ePs3yePa32grQHRDX5X9F_wBb-MBW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128013536</pqid></control><display><type>article</type><title>Prediction of human O-linked glycosylation sites using stacked generalization and embeddings from pre-trained protein language model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pakhrin, Subash Chandra ; Chauhan, Neha ; Khan, Salman ; Upadhyaya, Jamie ; Beck, Moriah Rene ; Blanco, Eduardo</creator><contributor>Gao, Xin</contributor><creatorcontrib>Pakhrin, Subash Chandra ; Chauhan, Neha ; Khan, Salman ; Upadhyaya, Jamie ; Beck, Moriah Rene ; Blanco, Eduardo ; Gao, Xin</creatorcontrib><description>Abstract
Motivation
O-linked glycosylation, an essential post-translational modification process in Homo sapiens, involves attaching sugar moieties to the oxygen atoms of serine and/or threonine residues. It influences various biological and cellular functions. While threonine or serine residues within protein sequences are potential sites for O-linked glycosylation, not all serine and/or threonine residues undergo this modification, underscoring the importance of characterizing its occurrence. This study presents a novel approach for predicting intracellular and extracellular O-linked glycosylation events on proteins, which are crucial for comprehending cellular processes. Two base multi-layer perceptron models were trained by leveraging a stacked generalization framework. These base models respectively use ProtT5 and Ankh O-linked glycosylation site-specific embeddings whose combined predictions are used to train the meta-multi-layer perceptron model. Trained on extensive O-linked glycosylation datasets, the stacked-generalization model demonstrated high predictive performance on independent test datasets. Furthermore, the study emphasizes the distinction between nucleocytoplasmic and extracellular O-linked glycosylation, offering insights into their functional implications that were overlooked in previous studies. By integrating the protein language model’s embedding with stacked generalization techniques, this approach enhances predictive accuracy of O-linked glycosylation events and illuminates the intricate roles of O-linked glycosylation in proteomics, potentially accelerating the discovery of novel glycosylation sites.
Results
Stack-OglyPred-PLM produces Sensitivity, Specificity, Matthews Correlation Coefficient, and Accuracy of 90.50%, 89.60%, 0.464, and 89.70%, respectively on a benchmark NetOGlyc-4.0 independent test dataset. These results demonstrate that Stack-OglyPred-PLM is a robust computational tool to predict O-linked glycosylation sites in proteins.
Availability and implementation
The developed tool, programs, training, and test dataset are available at https://github.com/PakhrinLab/Stack-OglyPred-PLM.</description><identifier>ISSN: 1367-4811</identifier><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btae643</identifier><identifier>PMID: 39447059</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Accuracy ; Availability ; Biological activity ; Computational Biology - methods ; Correlation coefficient ; Correlation coefficients ; Databases, Protein ; Datasets ; Embedding ; Glycosylation ; Humans ; Multilayer perceptrons ; Multilayers ; Neural Networks, Computer ; Original Paper ; Oxygen atoms ; Post-translation ; Predictions ; Protein Processing, Post-Translational ; Proteins ; Proteins - chemistry ; Proteins - metabolism ; Proteomics ; Residues ; Serine ; Software ; Threonine</subject><ispartof>Bioinformatics (Oxford, England), 2024-11, Vol.40 (11)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-c3f71a8b17ad89e1fa8ebba84331b4d059dae94609754dc551fa44182f500de13</cites><orcidid>0009-0009-3310-2939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552629/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552629/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39447059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gao, Xin</contributor><creatorcontrib>Pakhrin, Subash Chandra</creatorcontrib><creatorcontrib>Chauhan, Neha</creatorcontrib><creatorcontrib>Khan, Salman</creatorcontrib><creatorcontrib>Upadhyaya, Jamie</creatorcontrib><creatorcontrib>Beck, Moriah Rene</creatorcontrib><creatorcontrib>Blanco, Eduardo</creatorcontrib><title>Prediction of human O-linked glycosylation sites using stacked generalization and embeddings from pre-trained protein language model</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
O-linked glycosylation, an essential post-translational modification process in Homo sapiens, involves attaching sugar moieties to the oxygen atoms of serine and/or threonine residues. It influences various biological and cellular functions. While threonine or serine residues within protein sequences are potential sites for O-linked glycosylation, not all serine and/or threonine residues undergo this modification, underscoring the importance of characterizing its occurrence. This study presents a novel approach for predicting intracellular and extracellular O-linked glycosylation events on proteins, which are crucial for comprehending cellular processes. Two base multi-layer perceptron models were trained by leveraging a stacked generalization framework. These base models respectively use ProtT5 and Ankh O-linked glycosylation site-specific embeddings whose combined predictions are used to train the meta-multi-layer perceptron model. Trained on extensive O-linked glycosylation datasets, the stacked-generalization model demonstrated high predictive performance on independent test datasets. Furthermore, the study emphasizes the distinction between nucleocytoplasmic and extracellular O-linked glycosylation, offering insights into their functional implications that were overlooked in previous studies. By integrating the protein language model’s embedding with stacked generalization techniques, this approach enhances predictive accuracy of O-linked glycosylation events and illuminates the intricate roles of O-linked glycosylation in proteomics, potentially accelerating the discovery of novel glycosylation sites.
Results
Stack-OglyPred-PLM produces Sensitivity, Specificity, Matthews Correlation Coefficient, and Accuracy of 90.50%, 89.60%, 0.464, and 89.70%, respectively on a benchmark NetOGlyc-4.0 independent test dataset. These results demonstrate that Stack-OglyPred-PLM is a robust computational tool to predict O-linked glycosylation sites in proteins.
Availability and implementation
The developed tool, programs, training, and test dataset are available at https://github.com/PakhrinLab/Stack-OglyPred-PLM.</description><subject>Accuracy</subject><subject>Availability</subject><subject>Biological activity</subject><subject>Computational Biology - methods</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Databases, Protein</subject><subject>Datasets</subject><subject>Embedding</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural Networks, Computer</subject><subject>Original Paper</subject><subject>Oxygen atoms</subject><subject>Post-translation</subject><subject>Predictions</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Proteomics</subject><subject>Residues</subject><subject>Serine</subject><subject>Software</subject><subject>Threonine</subject><issn>1367-4811</issn><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1rFTEUxYNYbG39F0rAjZuxycvHzKxEil9QqIt2HTLJnWlqJhmTTOG59g837XuW1pWb3MD93cM5HIROKXlPSc_OBhddGGOadXEmnw1Fg-TsBTqiTLYN7yh9-eR_iF7nfEsIEUTIV-iQ9Zy3RPRH6Pf3BNaZ4mLAccQ366wDvmy8Cz_A4slvTcxbrx_22RXIeM0uTDgXbR4ICJC0d792iA4WwzyAtRXKeExxxkuCpiTtQsWXFAu4gL0O06onwHO04E_Qwah9hjf7eYyuP3-6Ov_aXFx--Xb-8aIxjPJS37Gluhtoq23XAx11B8OgO84YHbiteayGnkvSt4JbI0QlOKfdZhSEWKDsGH3Y6S7rMIM1EKovr5bkZp22Kmqnnm-Cu1FTvFOUCrGRm74qvNsrpPhzhVzU7LIBX_NAXLNidFNtMCnbir79B72Nawo13z3VEcoEk5WSO8qkmHOC8dENJeq-afW8abVvuh6ePs3yePa32grQHRDX5X9F_wBb-MBW</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Pakhrin, Subash Chandra</creator><creator>Chauhan, Neha</creator><creator>Khan, Salman</creator><creator>Upadhyaya, Jamie</creator><creator>Beck, Moriah Rene</creator><creator>Blanco, Eduardo</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0009-3310-2939</orcidid></search><sort><creationdate>20241101</creationdate><title>Prediction of human O-linked glycosylation sites using stacked generalization and embeddings from pre-trained protein language model</title><author>Pakhrin, Subash Chandra ; Chauhan, Neha ; Khan, Salman ; Upadhyaya, Jamie ; Beck, Moriah Rene ; Blanco, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-c3f71a8b17ad89e1fa8ebba84331b4d059dae94609754dc551fa44182f500de13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Availability</topic><topic>Biological activity</topic><topic>Computational Biology - methods</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Databases, Protein</topic><topic>Datasets</topic><topic>Embedding</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural Networks, Computer</topic><topic>Original Paper</topic><topic>Oxygen atoms</topic><topic>Post-translation</topic><topic>Predictions</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Proteomics</topic><topic>Residues</topic><topic>Serine</topic><topic>Software</topic><topic>Threonine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pakhrin, Subash Chandra</creatorcontrib><creatorcontrib>Chauhan, Neha</creatorcontrib><creatorcontrib>Khan, Salman</creatorcontrib><creatorcontrib>Upadhyaya, Jamie</creatorcontrib><creatorcontrib>Beck, Moriah Rene</creatorcontrib><creatorcontrib>Blanco, Eduardo</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pakhrin, Subash Chandra</au><au>Chauhan, Neha</au><au>Khan, Salman</au><au>Upadhyaya, Jamie</au><au>Beck, Moriah Rene</au><au>Blanco, Eduardo</au><au>Gao, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of human O-linked glycosylation sites using stacked generalization and embeddings from pre-trained protein language model</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>40</volume><issue>11</issue><issn>1367-4811</issn><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
O-linked glycosylation, an essential post-translational modification process in Homo sapiens, involves attaching sugar moieties to the oxygen atoms of serine and/or threonine residues. It influences various biological and cellular functions. While threonine or serine residues within protein sequences are potential sites for O-linked glycosylation, not all serine and/or threonine residues undergo this modification, underscoring the importance of characterizing its occurrence. This study presents a novel approach for predicting intracellular and extracellular O-linked glycosylation events on proteins, which are crucial for comprehending cellular processes. Two base multi-layer perceptron models were trained by leveraging a stacked generalization framework. These base models respectively use ProtT5 and Ankh O-linked glycosylation site-specific embeddings whose combined predictions are used to train the meta-multi-layer perceptron model. Trained on extensive O-linked glycosylation datasets, the stacked-generalization model demonstrated high predictive performance on independent test datasets. Furthermore, the study emphasizes the distinction between nucleocytoplasmic and extracellular O-linked glycosylation, offering insights into their functional implications that were overlooked in previous studies. By integrating the protein language model’s embedding with stacked generalization techniques, this approach enhances predictive accuracy of O-linked glycosylation events and illuminates the intricate roles of O-linked glycosylation in proteomics, potentially accelerating the discovery of novel glycosylation sites.
Results
Stack-OglyPred-PLM produces Sensitivity, Specificity, Matthews Correlation Coefficient, and Accuracy of 90.50%, 89.60%, 0.464, and 89.70%, respectively on a benchmark NetOGlyc-4.0 independent test dataset. These results demonstrate that Stack-OglyPred-PLM is a robust computational tool to predict O-linked glycosylation sites in proteins.
Availability and implementation
The developed tool, programs, training, and test dataset are available at https://github.com/PakhrinLab/Stack-OglyPred-PLM.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39447059</pmid><doi>10.1093/bioinformatics/btae643</doi><orcidid>https://orcid.org/0009-0009-3310-2939</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4811 |
ispartof | Bioinformatics (Oxford, England), 2024-11, Vol.40 (11) |
issn | 1367-4811 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11552629 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Accuracy Availability Biological activity Computational Biology - methods Correlation coefficient Correlation coefficients Databases, Protein Datasets Embedding Glycosylation Humans Multilayer perceptrons Multilayers Neural Networks, Computer Original Paper Oxygen atoms Post-translation Predictions Protein Processing, Post-Translational Proteins Proteins - chemistry Proteins - metabolism Proteomics Residues Serine Software Threonine |
title | Prediction of human O-linked glycosylation sites using stacked generalization and embeddings from pre-trained protein language model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20human%20O-linked%20glycosylation%20sites%20using%20stacked%20generalization%20and%20embeddings%20from%20pre-trained%20protein%20language%20model&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Pakhrin,%20Subash%20Chandra&rft.date=2024-11-01&rft.volume=40&rft.issue=11&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btae643&rft_dat=%3Cproquest_pubme%3E3120593667%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128013536&rft_id=info:pmid/39447059&rft_oup_id=10.1093/bioinformatics/btae643&rfr_iscdi=true |