Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells

Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2024-12, Vol.81 (1), p.448, Article 448
Hauptverfasser: Li, Long, Liu, Huimin, Chai, Quanyou, Wei, Junyi, Qin, Yuqiao, Yang, Jingyao, Liu, He, Qi, Jia, Guo, Chunling, Lu, Zhaoyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 448
container_title Cellular and molecular life sciences : CMLS
container_volume 81
creator Li, Long
Liu, Huimin
Chai, Quanyou
Wei, Junyi
Qin, Yuqiao
Yang, Jingyao
Liu, He
Qi, Jia
Guo, Chunling
Lu, Zhaoyang
description Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing lack of any effective therapies that can treat this condition. The sodium-glucose transporter 2 (SGLT2) inhibitor dapagliflozin (DAPA) has shown beneficial effects in cardiovascular disease. The role of this inhibitor in the context of vascular calcification, however, remains largely uncharacterized. Our findings revealed that DAPA treatment was sufficient to alleviate in vitro and in vivo osteogenic transdifferentiation and vascular calcification. Interestingly, our study demonstrated that DAPA exerts its anti-calcification effects on VSMCs by directly targeting SGLT2, with the overexpression of SGLT2 being sufficient to attenuate these beneficial effects. DAPA was also able to limit the glucose levels and NAD + /NADH ratio in calcified VSMCs, upregulating sirtuin 1 (SIRT1) in a caloric restriction (CR)-dependent manner. The SIRT1-specific siRNA and the SIRT1 inhibitor EX527 attenuated the anti-calcification effects of DAPA treatment. DAPA was also to drive SIRT1-mediated deacetylation and consequent degradation of hypoxia-inducible factor-1α (HIF-1α). The use of cobalt chloride and proteasome inhibitor MG132 to preserve HIF-1α stability mitigated the anti-calcification activity of DAPA. These analyses revealed that the DAPA/SGLT2/SIRT1 axis may therefore represent a viable novel approach to treating vascular calcification, offering new insights into how SGLT2 inhibitors may help prevent and treat vascular calcification. Graphical abstract Dapagliflozin attenuated vascular smooth muscle cells osteogenic transdifferentiation and vascular calcification through the SIRT1-mediated deacetylation and degradation of HIF-1α in a manner dependent on caloric restriction.
doi_str_mv 10.1007/s00018-024-05486-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11550308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128746266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c3f710a85ea6d8c73df020a59120300bd5b7b69c60a4a8c5d44c3cbe746d0c4a3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEoqXwBTggS1y4hI7t2PGeEGpLqbQSEl0kbtbEcbKusvZiO5Wo-PB4u0v5c-BiW5qf35uZV1UvKbylAO1pAgCqamBNDaJRslaPqmPaMKgX0NLHh7dU7OtR9Sylm0ILxeTT6ogvBAPB1XH14xy3OE5umMKd8yRjHG1O5PpyuWKn11efV5QkN3qcnB9JDgRztn7GbEleWxJStmG03hmSI_rUu2Gw0frsMLvgSRjILSYzTxhJ2oSQ12QzJzNZYuw0pefVkwGnZF8c7pPqy4eL1dnHevnp8urs_bI2XMhczqGlgEpYlL0yLe8HYIBiQRlwgK4XXdvJhZGADSoj-qYx3HS2bWQPpkF-Ur3b627nbmN7UxqMOOltdBuM33VAp_-ueLfWY7jVlApRLFRReHNQiOHbbFPWG5d2M6C3YU6aU6aKHZOyoK__QW_CHMsG7ynZ8FZIXii2p0wMKUU7PHRDQe_S1ft0dUlX36erd128-nOOhy-_4iwA3wOplPxo42_v_8j-BObrss0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126437563</pqid></control><display><type>article</type><title>Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Long ; Liu, Huimin ; Chai, Quanyou ; Wei, Junyi ; Qin, Yuqiao ; Yang, Jingyao ; Liu, He ; Qi, Jia ; Guo, Chunling ; Lu, Zhaoyang</creator><creatorcontrib>Li, Long ; Liu, Huimin ; Chai, Quanyou ; Wei, Junyi ; Qin, Yuqiao ; Yang, Jingyao ; Liu, He ; Qi, Jia ; Guo, Chunling ; Lu, Zhaoyang</creatorcontrib><description>Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing lack of any effective therapies that can treat this condition. The sodium-glucose transporter 2 (SGLT2) inhibitor dapagliflozin (DAPA) has shown beneficial effects in cardiovascular disease. The role of this inhibitor in the context of vascular calcification, however, remains largely uncharacterized. Our findings revealed that DAPA treatment was sufficient to alleviate in vitro and in vivo osteogenic transdifferentiation and vascular calcification. Interestingly, our study demonstrated that DAPA exerts its anti-calcification effects on VSMCs by directly targeting SGLT2, with the overexpression of SGLT2 being sufficient to attenuate these beneficial effects. DAPA was also able to limit the glucose levels and NAD + /NADH ratio in calcified VSMCs, upregulating sirtuin 1 (SIRT1) in a caloric restriction (CR)-dependent manner. The SIRT1-specific siRNA and the SIRT1 inhibitor EX527 attenuated the anti-calcification effects of DAPA treatment. DAPA was also to drive SIRT1-mediated deacetylation and consequent degradation of hypoxia-inducible factor-1α (HIF-1α). The use of cobalt chloride and proteasome inhibitor MG132 to preserve HIF-1α stability mitigated the anti-calcification activity of DAPA. These analyses revealed that the DAPA/SGLT2/SIRT1 axis may therefore represent a viable novel approach to treating vascular calcification, offering new insights into how SGLT2 inhibitors may help prevent and treat vascular calcification. Graphical abstract Dapagliflozin attenuated vascular smooth muscle cells osteogenic transdifferentiation and vascular calcification through the SIRT1-mediated deacetylation and degradation of HIF-1α in a manner dependent on caloric restriction.</description><identifier>ISSN: 1420-682X</identifier><identifier>ISSN: 1420-9071</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-024-05486-8</identifier><identifier>PMID: 39520538</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Arteriosclerosis ; Atherosclerosis ; Attenuation ; Benzhydryl Compounds - pharmacology ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Calcification ; Calcification (ectopic) ; Cardiovascular diseases ; Cell Biology ; Cell Transdifferentiation - drug effects ; Cells, Cultured ; Cobalt ; Cobalt chloride ; Deacetylation ; Diabetes mellitus ; Dietary restrictions ; Glucose ; Glucose - metabolism ; Glucose transporter ; Glucosides - pharmacology ; Humans ; Hypoxia ; Hypoxia-inducible factor 1a ; In vivo methods and tests ; Inhibitors ; Kidney diseases ; Life Sciences ; Male ; Mice ; Mice, Inbred C57BL ; Muscle, Smooth, Vascular - cytology ; Muscle, Smooth, Vascular - drug effects ; Muscle, Smooth, Vascular - metabolism ; Muscles ; Myocytes, Smooth Muscle - cytology ; Myocytes, Smooth Muscle - drug effects ; Myocytes, Smooth Muscle - metabolism ; Nicotinamide adenine dinucleotide ; Original ; Original Article ; Osteogenesis - drug effects ; Proteasome inhibitors ; Proteasomes ; Signal Transduction - drug effects ; siRNA ; SIRT1 protein ; Sirtuin 1 - genetics ; Sirtuin 1 - metabolism ; Smooth muscle ; Sodium-glucose cotransporter ; Sodium-Glucose Transporter 2 - genetics ; Sodium-Glucose Transporter 2 - metabolism ; Sodium-Glucose Transporter 2 Inhibitors - pharmacology ; Vascular Calcification - drug therapy ; Vascular Calcification - metabolism ; Vascular Calcification - pathology</subject><ispartof>Cellular and molecular life sciences : CMLS, 2024-12, Vol.81 (1), p.448, Article 448</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-c3f710a85ea6d8c73df020a59120300bd5b7b69c60a4a8c5d44c3cbe746d0c4a3</cites><orcidid>0000-0003-3367-2674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550308/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550308/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41120,41488,42189,42557,51319,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39520538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Liu, Huimin</creatorcontrib><creatorcontrib>Chai, Quanyou</creatorcontrib><creatorcontrib>Wei, Junyi</creatorcontrib><creatorcontrib>Qin, Yuqiao</creatorcontrib><creatorcontrib>Yang, Jingyao</creatorcontrib><creatorcontrib>Liu, He</creatorcontrib><creatorcontrib>Qi, Jia</creatorcontrib><creatorcontrib>Guo, Chunling</creatorcontrib><creatorcontrib>Lu, Zhaoyang</creatorcontrib><title>Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing lack of any effective therapies that can treat this condition. The sodium-glucose transporter 2 (SGLT2) inhibitor dapagliflozin (DAPA) has shown beneficial effects in cardiovascular disease. The role of this inhibitor in the context of vascular calcification, however, remains largely uncharacterized. Our findings revealed that DAPA treatment was sufficient to alleviate in vitro and in vivo osteogenic transdifferentiation and vascular calcification. Interestingly, our study demonstrated that DAPA exerts its anti-calcification effects on VSMCs by directly targeting SGLT2, with the overexpression of SGLT2 being sufficient to attenuate these beneficial effects. DAPA was also able to limit the glucose levels and NAD + /NADH ratio in calcified VSMCs, upregulating sirtuin 1 (SIRT1) in a caloric restriction (CR)-dependent manner. The SIRT1-specific siRNA and the SIRT1 inhibitor EX527 attenuated the anti-calcification effects of DAPA treatment. DAPA was also to drive SIRT1-mediated deacetylation and consequent degradation of hypoxia-inducible factor-1α (HIF-1α). The use of cobalt chloride and proteasome inhibitor MG132 to preserve HIF-1α stability mitigated the anti-calcification activity of DAPA. These analyses revealed that the DAPA/SGLT2/SIRT1 axis may therefore represent a viable novel approach to treating vascular calcification, offering new insights into how SGLT2 inhibitors may help prevent and treat vascular calcification. Graphical abstract Dapagliflozin attenuated vascular smooth muscle cells osteogenic transdifferentiation and vascular calcification through the SIRT1-mediated deacetylation and degradation of HIF-1α in a manner dependent on caloric restriction.</description><subject>Animals</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Attenuation</subject><subject>Benzhydryl Compounds - pharmacology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcification</subject><subject>Calcification (ectopic)</subject><subject>Cardiovascular diseases</subject><subject>Cell Biology</subject><subject>Cell Transdifferentiation - drug effects</subject><subject>Cells, Cultured</subject><subject>Cobalt</subject><subject>Cobalt chloride</subject><subject>Deacetylation</subject><subject>Diabetes mellitus</subject><subject>Dietary restrictions</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose transporter</subject><subject>Glucosides - pharmacology</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1a</subject><subject>In vivo methods and tests</subject><subject>Inhibitors</subject><subject>Kidney diseases</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Muscle, Smooth, Vascular - drug effects</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscles</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Myocytes, Smooth Muscle - drug effects</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Original</subject><subject>Original Article</subject><subject>Osteogenesis - drug effects</subject><subject>Proteasome inhibitors</subject><subject>Proteasomes</subject><subject>Signal Transduction - drug effects</subject><subject>siRNA</subject><subject>SIRT1 protein</subject><subject>Sirtuin 1 - genetics</subject><subject>Sirtuin 1 - metabolism</subject><subject>Smooth muscle</subject><subject>Sodium-glucose cotransporter</subject><subject>Sodium-Glucose Transporter 2 - genetics</subject><subject>Sodium-Glucose Transporter 2 - metabolism</subject><subject>Sodium-Glucose Transporter 2 Inhibitors - pharmacology</subject><subject>Vascular Calcification - drug therapy</subject><subject>Vascular Calcification - metabolism</subject><subject>Vascular Calcification - pathology</subject><issn>1420-682X</issn><issn>1420-9071</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxSMEoqXwBTggS1y4hI7t2PGeEGpLqbQSEl0kbtbEcbKusvZiO5Wo-PB4u0v5c-BiW5qf35uZV1UvKbylAO1pAgCqamBNDaJRslaPqmPaMKgX0NLHh7dU7OtR9Sylm0ILxeTT6ogvBAPB1XH14xy3OE5umMKd8yRjHG1O5PpyuWKn11efV5QkN3qcnB9JDgRztn7GbEleWxJStmG03hmSI_rUu2Gw0frsMLvgSRjILSYzTxhJ2oSQ12QzJzNZYuw0pefVkwGnZF8c7pPqy4eL1dnHevnp8urs_bI2XMhczqGlgEpYlL0yLe8HYIBiQRlwgK4XXdvJhZGADSoj-qYx3HS2bWQPpkF-Ur3b627nbmN7UxqMOOltdBuM33VAp_-ueLfWY7jVlApRLFRReHNQiOHbbFPWG5d2M6C3YU6aU6aKHZOyoK__QW_CHMsG7ynZ8FZIXii2p0wMKUU7PHRDQe_S1ft0dUlX36erd128-nOOhy-_4iwA3wOplPxo42_v_8j-BObrss0</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Li, Long</creator><creator>Liu, Huimin</creator><creator>Chai, Quanyou</creator><creator>Wei, Junyi</creator><creator>Qin, Yuqiao</creator><creator>Yang, Jingyao</creator><creator>Liu, He</creator><creator>Qi, Jia</creator><creator>Guo, Chunling</creator><creator>Lu, Zhaoyang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3367-2674</orcidid></search><sort><creationdate>20241201</creationdate><title>Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells</title><author>Li, Long ; Liu, Huimin ; Chai, Quanyou ; Wei, Junyi ; Qin, Yuqiao ; Yang, Jingyao ; Liu, He ; Qi, Jia ; Guo, Chunling ; Lu, Zhaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c3f710a85ea6d8c73df020a59120300bd5b7b69c60a4a8c5d44c3cbe746d0c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Attenuation</topic><topic>Benzhydryl Compounds - pharmacology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcification</topic><topic>Calcification (ectopic)</topic><topic>Cardiovascular diseases</topic><topic>Cell Biology</topic><topic>Cell Transdifferentiation - drug effects</topic><topic>Cells, Cultured</topic><topic>Cobalt</topic><topic>Cobalt chloride</topic><topic>Deacetylation</topic><topic>Diabetes mellitus</topic><topic>Dietary restrictions</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose transporter</topic><topic>Glucosides - pharmacology</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1a</topic><topic>In vivo methods and tests</topic><topic>Inhibitors</topic><topic>Kidney diseases</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Muscle, Smooth, Vascular - drug effects</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscles</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Myocytes, Smooth Muscle - drug effects</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Original</topic><topic>Original Article</topic><topic>Osteogenesis - drug effects</topic><topic>Proteasome inhibitors</topic><topic>Proteasomes</topic><topic>Signal Transduction - drug effects</topic><topic>siRNA</topic><topic>SIRT1 protein</topic><topic>Sirtuin 1 - genetics</topic><topic>Sirtuin 1 - metabolism</topic><topic>Smooth muscle</topic><topic>Sodium-glucose cotransporter</topic><topic>Sodium-Glucose Transporter 2 - genetics</topic><topic>Sodium-Glucose Transporter 2 - metabolism</topic><topic>Sodium-Glucose Transporter 2 Inhibitors - pharmacology</topic><topic>Vascular Calcification - drug therapy</topic><topic>Vascular Calcification - metabolism</topic><topic>Vascular Calcification - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Liu, Huimin</creatorcontrib><creatorcontrib>Chai, Quanyou</creatorcontrib><creatorcontrib>Wei, Junyi</creatorcontrib><creatorcontrib>Qin, Yuqiao</creatorcontrib><creatorcontrib>Yang, Jingyao</creatorcontrib><creatorcontrib>Liu, He</creatorcontrib><creatorcontrib>Qi, Jia</creatorcontrib><creatorcontrib>Guo, Chunling</creatorcontrib><creatorcontrib>Lu, Zhaoyang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Long</au><au>Liu, Huimin</au><au>Chai, Quanyou</au><au>Wei, Junyi</au><au>Qin, Yuqiao</au><au>Yang, Jingyao</au><au>Liu, He</au><au>Qi, Jia</au><au>Guo, Chunling</au><au>Lu, Zhaoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>81</volume><issue>1</issue><spage>448</spage><pages>448-</pages><artnum>448</artnum><issn>1420-682X</issn><issn>1420-9071</issn><eissn>1420-9071</eissn><abstract>Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing lack of any effective therapies that can treat this condition. The sodium-glucose transporter 2 (SGLT2) inhibitor dapagliflozin (DAPA) has shown beneficial effects in cardiovascular disease. The role of this inhibitor in the context of vascular calcification, however, remains largely uncharacterized. Our findings revealed that DAPA treatment was sufficient to alleviate in vitro and in vivo osteogenic transdifferentiation and vascular calcification. Interestingly, our study demonstrated that DAPA exerts its anti-calcification effects on VSMCs by directly targeting SGLT2, with the overexpression of SGLT2 being sufficient to attenuate these beneficial effects. DAPA was also able to limit the glucose levels and NAD + /NADH ratio in calcified VSMCs, upregulating sirtuin 1 (SIRT1) in a caloric restriction (CR)-dependent manner. The SIRT1-specific siRNA and the SIRT1 inhibitor EX527 attenuated the anti-calcification effects of DAPA treatment. DAPA was also to drive SIRT1-mediated deacetylation and consequent degradation of hypoxia-inducible factor-1α (HIF-1α). The use of cobalt chloride and proteasome inhibitor MG132 to preserve HIF-1α stability mitigated the anti-calcification activity of DAPA. These analyses revealed that the DAPA/SGLT2/SIRT1 axis may therefore represent a viable novel approach to treating vascular calcification, offering new insights into how SGLT2 inhibitors may help prevent and treat vascular calcification. Graphical abstract Dapagliflozin attenuated vascular smooth muscle cells osteogenic transdifferentiation and vascular calcification through the SIRT1-mediated deacetylation and degradation of HIF-1α in a manner dependent on caloric restriction.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>39520538</pmid><doi>10.1007/s00018-024-05486-8</doi><orcidid>https://orcid.org/0000-0003-3367-2674</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2024-12, Vol.81 (1), p.448, Article 448
issn 1420-682X
1420-9071
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11550308
source MEDLINE; Springer Nature OA Free Journals; PubMed Central; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Animals
Arteriosclerosis
Atherosclerosis
Attenuation
Benzhydryl Compounds - pharmacology
Biochemistry
Biomedical and Life Sciences
Biomedicine
Calcification
Calcification (ectopic)
Cardiovascular diseases
Cell Biology
Cell Transdifferentiation - drug effects
Cells, Cultured
Cobalt
Cobalt chloride
Deacetylation
Diabetes mellitus
Dietary restrictions
Glucose
Glucose - metabolism
Glucose transporter
Glucosides - pharmacology
Humans
Hypoxia
Hypoxia-inducible factor 1a
In vivo methods and tests
Inhibitors
Kidney diseases
Life Sciences
Male
Mice
Mice, Inbred C57BL
Muscle, Smooth, Vascular - cytology
Muscle, Smooth, Vascular - drug effects
Muscle, Smooth, Vascular - metabolism
Muscles
Myocytes, Smooth Muscle - cytology
Myocytes, Smooth Muscle - drug effects
Myocytes, Smooth Muscle - metabolism
Nicotinamide adenine dinucleotide
Original
Original Article
Osteogenesis - drug effects
Proteasome inhibitors
Proteasomes
Signal Transduction - drug effects
siRNA
SIRT1 protein
Sirtuin 1 - genetics
Sirtuin 1 - metabolism
Smooth muscle
Sodium-glucose cotransporter
Sodium-Glucose Transporter 2 - genetics
Sodium-Glucose Transporter 2 - metabolism
Sodium-Glucose Transporter 2 Inhibitors - pharmacology
Vascular Calcification - drug therapy
Vascular Calcification - metabolism
Vascular Calcification - pathology
title Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dapagliflozin%20targets%20SGLT2/SIRT1%20signaling%20to%20attenuate%20the%20osteogenic%20transdifferentiation%20of%20vascular%20smooth%20muscle%20cells&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Li,%20Long&rft.date=2024-12-01&rft.volume=81&rft.issue=1&rft.spage=448&rft.pages=448-&rft.artnum=448&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-024-05486-8&rft_dat=%3Cproquest_pubme%3E3128746266%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126437563&rft_id=info:pmid/39520538&rfr_iscdi=true