Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells
Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2024-12, Vol.81 (1), p.448, Article 448 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 448 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 81 |
creator | Li, Long Liu, Huimin Chai, Quanyou Wei, Junyi Qin, Yuqiao Yang, Jingyao Liu, He Qi, Jia Guo, Chunling Lu, Zhaoyang |
description | Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing lack of any effective therapies that can treat this condition. The sodium-glucose transporter 2 (SGLT2) inhibitor dapagliflozin (DAPA) has shown beneficial effects in cardiovascular disease. The role of this inhibitor in the context of vascular calcification, however, remains largely uncharacterized. Our findings revealed that DAPA treatment was sufficient to alleviate in vitro and in vivo osteogenic transdifferentiation and vascular calcification. Interestingly, our study demonstrated that DAPA exerts its anti-calcification effects on VSMCs by directly targeting SGLT2, with the overexpression of SGLT2 being sufficient to attenuate these beneficial effects. DAPA was also able to limit the glucose levels and NAD
+
/NADH ratio in calcified VSMCs, upregulating sirtuin 1 (SIRT1) in a caloric restriction (CR)-dependent manner. The SIRT1-specific siRNA and the SIRT1 inhibitor EX527 attenuated the anti-calcification effects of DAPA treatment. DAPA was also to drive SIRT1-mediated deacetylation and consequent degradation of hypoxia-inducible factor-1α (HIF-1α). The use of cobalt chloride and proteasome inhibitor MG132 to preserve HIF-1α stability mitigated the anti-calcification activity of DAPA. These analyses revealed that the DAPA/SGLT2/SIRT1 axis may therefore represent a viable novel approach to treating vascular calcification, offering new insights into how SGLT2 inhibitors may help prevent and treat vascular calcification.
Graphical abstract
Dapagliflozin attenuated vascular smooth muscle cells osteogenic transdifferentiation and vascular calcification through the SIRT1-mediated deacetylation and degradation of HIF-1α in a manner dependent on caloric restriction. |
doi_str_mv | 10.1007/s00018-024-05486-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11550308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128746266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c3f710a85ea6d8c73df020a59120300bd5b7b69c60a4a8c5d44c3cbe746d0c4a3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEoqXwBTggS1y4hI7t2PGeEGpLqbQSEl0kbtbEcbKusvZiO5Wo-PB4u0v5c-BiW5qf35uZV1UvKbylAO1pAgCqamBNDaJRslaPqmPaMKgX0NLHh7dU7OtR9Sylm0ILxeTT6ogvBAPB1XH14xy3OE5umMKd8yRjHG1O5PpyuWKn11efV5QkN3qcnB9JDgRztn7GbEleWxJStmG03hmSI_rUu2Gw0frsMLvgSRjILSYzTxhJ2oSQ12QzJzNZYuw0pefVkwGnZF8c7pPqy4eL1dnHevnp8urs_bI2XMhczqGlgEpYlL0yLe8HYIBiQRlwgK4XXdvJhZGADSoj-qYx3HS2bWQPpkF-Ur3b627nbmN7UxqMOOltdBuM33VAp_-ueLfWY7jVlApRLFRReHNQiOHbbFPWG5d2M6C3YU6aU6aKHZOyoK__QW_CHMsG7ynZ8FZIXii2p0wMKUU7PHRDQe_S1ft0dUlX36erd128-nOOhy-_4iwA3wOplPxo42_v_8j-BObrss0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126437563</pqid></control><display><type>article</type><title>Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Long ; Liu, Huimin ; Chai, Quanyou ; Wei, Junyi ; Qin, Yuqiao ; Yang, Jingyao ; Liu, He ; Qi, Jia ; Guo, Chunling ; Lu, Zhaoyang</creator><creatorcontrib>Li, Long ; Liu, Huimin ; Chai, Quanyou ; Wei, Junyi ; Qin, Yuqiao ; Yang, Jingyao ; Liu, He ; Qi, Jia ; Guo, Chunling ; Lu, Zhaoyang</creatorcontrib><description>Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing lack of any effective therapies that can treat this condition. The sodium-glucose transporter 2 (SGLT2) inhibitor dapagliflozin (DAPA) has shown beneficial effects in cardiovascular disease. The role of this inhibitor in the context of vascular calcification, however, remains largely uncharacterized. Our findings revealed that DAPA treatment was sufficient to alleviate in vitro and in vivo osteogenic transdifferentiation and vascular calcification. Interestingly, our study demonstrated that DAPA exerts its anti-calcification effects on VSMCs by directly targeting SGLT2, with the overexpression of SGLT2 being sufficient to attenuate these beneficial effects. DAPA was also able to limit the glucose levels and NAD
+
/NADH ratio in calcified VSMCs, upregulating sirtuin 1 (SIRT1) in a caloric restriction (CR)-dependent manner. The SIRT1-specific siRNA and the SIRT1 inhibitor EX527 attenuated the anti-calcification effects of DAPA treatment. DAPA was also to drive SIRT1-mediated deacetylation and consequent degradation of hypoxia-inducible factor-1α (HIF-1α). The use of cobalt chloride and proteasome inhibitor MG132 to preserve HIF-1α stability mitigated the anti-calcification activity of DAPA. These analyses revealed that the DAPA/SGLT2/SIRT1 axis may therefore represent a viable novel approach to treating vascular calcification, offering new insights into how SGLT2 inhibitors may help prevent and treat vascular calcification.
Graphical abstract
Dapagliflozin attenuated vascular smooth muscle cells osteogenic transdifferentiation and vascular calcification through the SIRT1-mediated deacetylation and degradation of HIF-1α in a manner dependent on caloric restriction.</description><identifier>ISSN: 1420-682X</identifier><identifier>ISSN: 1420-9071</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-024-05486-8</identifier><identifier>PMID: 39520538</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Arteriosclerosis ; Atherosclerosis ; Attenuation ; Benzhydryl Compounds - pharmacology ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Calcification ; Calcification (ectopic) ; Cardiovascular diseases ; Cell Biology ; Cell Transdifferentiation - drug effects ; Cells, Cultured ; Cobalt ; Cobalt chloride ; Deacetylation ; Diabetes mellitus ; Dietary restrictions ; Glucose ; Glucose - metabolism ; Glucose transporter ; Glucosides - pharmacology ; Humans ; Hypoxia ; Hypoxia-inducible factor 1a ; In vivo methods and tests ; Inhibitors ; Kidney diseases ; Life Sciences ; Male ; Mice ; Mice, Inbred C57BL ; Muscle, Smooth, Vascular - cytology ; Muscle, Smooth, Vascular - drug effects ; Muscle, Smooth, Vascular - metabolism ; Muscles ; Myocytes, Smooth Muscle - cytology ; Myocytes, Smooth Muscle - drug effects ; Myocytes, Smooth Muscle - metabolism ; Nicotinamide adenine dinucleotide ; Original ; Original Article ; Osteogenesis - drug effects ; Proteasome inhibitors ; Proteasomes ; Signal Transduction - drug effects ; siRNA ; SIRT1 protein ; Sirtuin 1 - genetics ; Sirtuin 1 - metabolism ; Smooth muscle ; Sodium-glucose cotransporter ; Sodium-Glucose Transporter 2 - genetics ; Sodium-Glucose Transporter 2 - metabolism ; Sodium-Glucose Transporter 2 Inhibitors - pharmacology ; Vascular Calcification - drug therapy ; Vascular Calcification - metabolism ; Vascular Calcification - pathology</subject><ispartof>Cellular and molecular life sciences : CMLS, 2024-12, Vol.81 (1), p.448, Article 448</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-c3f710a85ea6d8c73df020a59120300bd5b7b69c60a4a8c5d44c3cbe746d0c4a3</cites><orcidid>0000-0003-3367-2674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550308/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550308/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41120,41488,42189,42557,51319,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39520538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Liu, Huimin</creatorcontrib><creatorcontrib>Chai, Quanyou</creatorcontrib><creatorcontrib>Wei, Junyi</creatorcontrib><creatorcontrib>Qin, Yuqiao</creatorcontrib><creatorcontrib>Yang, Jingyao</creatorcontrib><creatorcontrib>Liu, He</creatorcontrib><creatorcontrib>Qi, Jia</creatorcontrib><creatorcontrib>Guo, Chunling</creatorcontrib><creatorcontrib>Lu, Zhaoyang</creatorcontrib><title>Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing lack of any effective therapies that can treat this condition. The sodium-glucose transporter 2 (SGLT2) inhibitor dapagliflozin (DAPA) has shown beneficial effects in cardiovascular disease. The role of this inhibitor in the context of vascular calcification, however, remains largely uncharacterized. Our findings revealed that DAPA treatment was sufficient to alleviate in vitro and in vivo osteogenic transdifferentiation and vascular calcification. Interestingly, our study demonstrated that DAPA exerts its anti-calcification effects on VSMCs by directly targeting SGLT2, with the overexpression of SGLT2 being sufficient to attenuate these beneficial effects. DAPA was also able to limit the glucose levels and NAD
+
/NADH ratio in calcified VSMCs, upregulating sirtuin 1 (SIRT1) in a caloric restriction (CR)-dependent manner. The SIRT1-specific siRNA and the SIRT1 inhibitor EX527 attenuated the anti-calcification effects of DAPA treatment. DAPA was also to drive SIRT1-mediated deacetylation and consequent degradation of hypoxia-inducible factor-1α (HIF-1α). The use of cobalt chloride and proteasome inhibitor MG132 to preserve HIF-1α stability mitigated the anti-calcification activity of DAPA. These analyses revealed that the DAPA/SGLT2/SIRT1 axis may therefore represent a viable novel approach to treating vascular calcification, offering new insights into how SGLT2 inhibitors may help prevent and treat vascular calcification.
Graphical abstract
Dapagliflozin attenuated vascular smooth muscle cells osteogenic transdifferentiation and vascular calcification through the SIRT1-mediated deacetylation and degradation of HIF-1α in a manner dependent on caloric restriction.</description><subject>Animals</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Attenuation</subject><subject>Benzhydryl Compounds - pharmacology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcification</subject><subject>Calcification (ectopic)</subject><subject>Cardiovascular diseases</subject><subject>Cell Biology</subject><subject>Cell Transdifferentiation - drug effects</subject><subject>Cells, Cultured</subject><subject>Cobalt</subject><subject>Cobalt chloride</subject><subject>Deacetylation</subject><subject>Diabetes mellitus</subject><subject>Dietary restrictions</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose transporter</subject><subject>Glucosides - pharmacology</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1a</subject><subject>In vivo methods and tests</subject><subject>Inhibitors</subject><subject>Kidney diseases</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Muscle, Smooth, Vascular - drug effects</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscles</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Myocytes, Smooth Muscle - drug effects</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Original</subject><subject>Original Article</subject><subject>Osteogenesis - drug effects</subject><subject>Proteasome inhibitors</subject><subject>Proteasomes</subject><subject>Signal Transduction - drug effects</subject><subject>siRNA</subject><subject>SIRT1 protein</subject><subject>Sirtuin 1 - genetics</subject><subject>Sirtuin 1 - metabolism</subject><subject>Smooth muscle</subject><subject>Sodium-glucose cotransporter</subject><subject>Sodium-Glucose Transporter 2 - genetics</subject><subject>Sodium-Glucose Transporter 2 - metabolism</subject><subject>Sodium-Glucose Transporter 2 Inhibitors - pharmacology</subject><subject>Vascular Calcification - drug therapy</subject><subject>Vascular Calcification - metabolism</subject><subject>Vascular Calcification - pathology</subject><issn>1420-682X</issn><issn>1420-9071</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxSMEoqXwBTggS1y4hI7t2PGeEGpLqbQSEl0kbtbEcbKusvZiO5Wo-PB4u0v5c-BiW5qf35uZV1UvKbylAO1pAgCqamBNDaJRslaPqmPaMKgX0NLHh7dU7OtR9Sylm0ILxeTT6ogvBAPB1XH14xy3OE5umMKd8yRjHG1O5PpyuWKn11efV5QkN3qcnB9JDgRztn7GbEleWxJStmG03hmSI_rUu2Gw0frsMLvgSRjILSYzTxhJ2oSQ12QzJzNZYuw0pefVkwGnZF8c7pPqy4eL1dnHevnp8urs_bI2XMhczqGlgEpYlL0yLe8HYIBiQRlwgK4XXdvJhZGADSoj-qYx3HS2bWQPpkF-Ur3b627nbmN7UxqMOOltdBuM33VAp_-ueLfWY7jVlApRLFRReHNQiOHbbFPWG5d2M6C3YU6aU6aKHZOyoK__QW_CHMsG7ynZ8FZIXii2p0wMKUU7PHRDQe_S1ft0dUlX36erd128-nOOhy-_4iwA3wOplPxo42_v_8j-BObrss0</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Li, Long</creator><creator>Liu, Huimin</creator><creator>Chai, Quanyou</creator><creator>Wei, Junyi</creator><creator>Qin, Yuqiao</creator><creator>Yang, Jingyao</creator><creator>Liu, He</creator><creator>Qi, Jia</creator><creator>Guo, Chunling</creator><creator>Lu, Zhaoyang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3367-2674</orcidid></search><sort><creationdate>20241201</creationdate><title>Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells</title><author>Li, Long ; Liu, Huimin ; Chai, Quanyou ; Wei, Junyi ; Qin, Yuqiao ; Yang, Jingyao ; Liu, He ; Qi, Jia ; Guo, Chunling ; Lu, Zhaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c3f710a85ea6d8c73df020a59120300bd5b7b69c60a4a8c5d44c3cbe746d0c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Attenuation</topic><topic>Benzhydryl Compounds - pharmacology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcification</topic><topic>Calcification (ectopic)</topic><topic>Cardiovascular diseases</topic><topic>Cell Biology</topic><topic>Cell Transdifferentiation - drug effects</topic><topic>Cells, Cultured</topic><topic>Cobalt</topic><topic>Cobalt chloride</topic><topic>Deacetylation</topic><topic>Diabetes mellitus</topic><topic>Dietary restrictions</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose transporter</topic><topic>Glucosides - pharmacology</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1a</topic><topic>In vivo methods and tests</topic><topic>Inhibitors</topic><topic>Kidney diseases</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Muscle, Smooth, Vascular - drug effects</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscles</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Myocytes, Smooth Muscle - drug effects</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Original</topic><topic>Original Article</topic><topic>Osteogenesis - drug effects</topic><topic>Proteasome inhibitors</topic><topic>Proteasomes</topic><topic>Signal Transduction - drug effects</topic><topic>siRNA</topic><topic>SIRT1 protein</topic><topic>Sirtuin 1 - genetics</topic><topic>Sirtuin 1 - metabolism</topic><topic>Smooth muscle</topic><topic>Sodium-glucose cotransporter</topic><topic>Sodium-Glucose Transporter 2 - genetics</topic><topic>Sodium-Glucose Transporter 2 - metabolism</topic><topic>Sodium-Glucose Transporter 2 Inhibitors - pharmacology</topic><topic>Vascular Calcification - drug therapy</topic><topic>Vascular Calcification - metabolism</topic><topic>Vascular Calcification - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Liu, Huimin</creatorcontrib><creatorcontrib>Chai, Quanyou</creatorcontrib><creatorcontrib>Wei, Junyi</creatorcontrib><creatorcontrib>Qin, Yuqiao</creatorcontrib><creatorcontrib>Yang, Jingyao</creatorcontrib><creatorcontrib>Liu, He</creatorcontrib><creatorcontrib>Qi, Jia</creatorcontrib><creatorcontrib>Guo, Chunling</creatorcontrib><creatorcontrib>Lu, Zhaoyang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Long</au><au>Liu, Huimin</au><au>Chai, Quanyou</au><au>Wei, Junyi</au><au>Qin, Yuqiao</au><au>Yang, Jingyao</au><au>Liu, He</au><au>Qi, Jia</au><au>Guo, Chunling</au><au>Lu, Zhaoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>81</volume><issue>1</issue><spage>448</spage><pages>448-</pages><artnum>448</artnum><issn>1420-682X</issn><issn>1420-9071</issn><eissn>1420-9071</eissn><abstract>Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing lack of any effective therapies that can treat this condition. The sodium-glucose transporter 2 (SGLT2) inhibitor dapagliflozin (DAPA) has shown beneficial effects in cardiovascular disease. The role of this inhibitor in the context of vascular calcification, however, remains largely uncharacterized. Our findings revealed that DAPA treatment was sufficient to alleviate in vitro and in vivo osteogenic transdifferentiation and vascular calcification. Interestingly, our study demonstrated that DAPA exerts its anti-calcification effects on VSMCs by directly targeting SGLT2, with the overexpression of SGLT2 being sufficient to attenuate these beneficial effects. DAPA was also able to limit the glucose levels and NAD
+
/NADH ratio in calcified VSMCs, upregulating sirtuin 1 (SIRT1) in a caloric restriction (CR)-dependent manner. The SIRT1-specific siRNA and the SIRT1 inhibitor EX527 attenuated the anti-calcification effects of DAPA treatment. DAPA was also to drive SIRT1-mediated deacetylation and consequent degradation of hypoxia-inducible factor-1α (HIF-1α). The use of cobalt chloride and proteasome inhibitor MG132 to preserve HIF-1α stability mitigated the anti-calcification activity of DAPA. These analyses revealed that the DAPA/SGLT2/SIRT1 axis may therefore represent a viable novel approach to treating vascular calcification, offering new insights into how SGLT2 inhibitors may help prevent and treat vascular calcification.
Graphical abstract
Dapagliflozin attenuated vascular smooth muscle cells osteogenic transdifferentiation and vascular calcification through the SIRT1-mediated deacetylation and degradation of HIF-1α in a manner dependent on caloric restriction.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>39520538</pmid><doi>10.1007/s00018-024-05486-8</doi><orcidid>https://orcid.org/0000-0003-3367-2674</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2024-12, Vol.81 (1), p.448, Article 448 |
issn | 1420-682X 1420-9071 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11550308 |
source | MEDLINE; Springer Nature OA Free Journals; PubMed Central; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Animals Arteriosclerosis Atherosclerosis Attenuation Benzhydryl Compounds - pharmacology Biochemistry Biomedical and Life Sciences Biomedicine Calcification Calcification (ectopic) Cardiovascular diseases Cell Biology Cell Transdifferentiation - drug effects Cells, Cultured Cobalt Cobalt chloride Deacetylation Diabetes mellitus Dietary restrictions Glucose Glucose - metabolism Glucose transporter Glucosides - pharmacology Humans Hypoxia Hypoxia-inducible factor 1a In vivo methods and tests Inhibitors Kidney diseases Life Sciences Male Mice Mice, Inbred C57BL Muscle, Smooth, Vascular - cytology Muscle, Smooth, Vascular - drug effects Muscle, Smooth, Vascular - metabolism Muscles Myocytes, Smooth Muscle - cytology Myocytes, Smooth Muscle - drug effects Myocytes, Smooth Muscle - metabolism Nicotinamide adenine dinucleotide Original Original Article Osteogenesis - drug effects Proteasome inhibitors Proteasomes Signal Transduction - drug effects siRNA SIRT1 protein Sirtuin 1 - genetics Sirtuin 1 - metabolism Smooth muscle Sodium-glucose cotransporter Sodium-Glucose Transporter 2 - genetics Sodium-Glucose Transporter 2 - metabolism Sodium-Glucose Transporter 2 Inhibitors - pharmacology Vascular Calcification - drug therapy Vascular Calcification - metabolism Vascular Calcification - pathology |
title | Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dapagliflozin%20targets%20SGLT2/SIRT1%20signaling%20to%20attenuate%20the%20osteogenic%20transdifferentiation%20of%20vascular%20smooth%20muscle%20cells&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Li,%20Long&rft.date=2024-12-01&rft.volume=81&rft.issue=1&rft.spage=448&rft.pages=448-&rft.artnum=448&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-024-05486-8&rft_dat=%3Cproquest_pubme%3E3128746266%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126437563&rft_id=info:pmid/39520538&rfr_iscdi=true |