Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps
Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventr...
Gespeichert in:
Veröffentlicht in: | International journal of artificial organs 2020-10, Vol.43 (10), p.653-662 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 662 |
---|---|
container_issue | 10 |
container_start_page | 653 |
container_title | International journal of artificial organs |
container_volume | 43 |
creator | Zhang, Jiafeng Chen, Zengsheng Griffith, Bartley P Wu, Zhongjun J |
description | Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventricular assist devices is essential to improve the left ventricular assist device therapy for heart failure patients. The CH-VAD is a new maglev centrifugal left ventricular assist device. In this study, the CH-VAD pump was numerically analyzed and compared with the HVAD and HeartMate II pumps under two clinically relevant conditions (flow: 4.5 L/min, pressure head: normal ~80 and hypertension ~120 mmHg). The velocity and shear stress fields, washout, and hemolysis index of the three pumps were assessed with computational fluid dynamics analysis. Under the same condition, the CH-VAD hemolysis index was two times lower than the HVAD and HeartMate II pumps; the CH-VAD had the least percentage volume with shear stress larger than 100 Pa (i.e. normal condition: 0.4% vs HVAD 1.0%, and HeartMate II 2.9%). Under the normal condition, more than 98% was washed out of the three pumps within 0.4 s. The washout times were slightly shorter under the hypertension condition for the three pumps. No regions inside the CH-VAD or HVAD had extremely long residential time, while areas near the straightener of the HeartMate II pump had long residential time (>4 s) indicating elevated risks of thrombosis. The computational fluid dynamics results suggested that the CH-VAD pump has a better hemolytic biocompatibility than the HVAD and HeartMate II pumps under the normal and hypertension conditions. |
doi_str_mv | 10.1177/0391398820903734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11549969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0391398820903734</sage_id><sourcerecordid>2353581675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-c0ab0c671e138e45f2b5a11a8709431e8606e22f9d65a04c9c363daca70ef8f93</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EokvpnROyxIVLih3_SXJC1Ra6K7XiAr1as86kmyqJg-1sBR-Az42zWwpUqmTJ0rzfvPH4EfKGs1POi-IDExUXVVnmrGKiEPIZWfAil5lmkj0ni1nOZv2IvArhljGupVQvyZHImRSSqQX5tXT9OEWIrRugo3YLHmxE3_7cl6hraNO5OwpDTTedczWtoYcbpKOLOMQ29SQkbpEOeEeT0uGOLlfZ9dk5Had-pDv0YQp7YjUXZ6MVgo9XEJGu13sqvCYvGugCntzfx-Tb509fk8_ll4v18uwyszLnMbMMNszqgiMXJUrV5BsFnENZsEoKjqVmGvO8qWqtgElbWaFFDRYKhk3ZVOKYfDz4jtOmx9qmFTx0ZvRtD_6HcdCa_5Wh3ZobtzOcK1lVenZ4f-_g3fcJQzR9Gyx2HQzopmByoYQquS5UQt89Qm_d5NM3J0qqlEE6PFHsQFnvQvDYPLyGMzOnbB6nnFre_rvFQ8OfWBOQHYCQovo79UnD30E5r4o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453203201</pqid></control><display><type>article</type><title>Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Zhang, Jiafeng ; Chen, Zengsheng ; Griffith, Bartley P ; Wu, Zhongjun J</creator><creatorcontrib>Zhang, Jiafeng ; Chen, Zengsheng ; Griffith, Bartley P ; Wu, Zhongjun J</creatorcontrib><description>Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventricular assist devices is essential to improve the left ventricular assist device therapy for heart failure patients. The CH-VAD is a new maglev centrifugal left ventricular assist device. In this study, the CH-VAD pump was numerically analyzed and compared with the HVAD and HeartMate II pumps under two clinically relevant conditions (flow: 4.5 L/min, pressure head: normal ~80 and hypertension ~120 mmHg). The velocity and shear stress fields, washout, and hemolysis index of the three pumps were assessed with computational fluid dynamics analysis. Under the same condition, the CH-VAD hemolysis index was two times lower than the HVAD and HeartMate II pumps; the CH-VAD had the least percentage volume with shear stress larger than 100 Pa (i.e. normal condition: 0.4% vs HVAD 1.0%, and HeartMate II 2.9%). Under the normal condition, more than 98% was washed out of the three pumps within 0.4 s. The washout times were slightly shorter under the hypertension condition for the three pumps. No regions inside the CH-VAD or HVAD had extremely long residential time, while areas near the straightener of the HeartMate II pump had long residential time (>4 s) indicating elevated risks of thrombosis. The computational fluid dynamics results suggested that the CH-VAD pump has a better hemolytic biocompatibility than the HVAD and HeartMate II pumps under the normal and hypertension conditions.</description><identifier>ISSN: 0391-3988</identifier><identifier>ISSN: 1724-6040</identifier><identifier>EISSN: 1724-6040</identifier><identifier>DOI: 10.1177/0391398820903734</identifier><identifier>PMID: 32043405</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Biocompatibility ; Blood cells ; Bridge failure ; Centrifugal pumps ; Computational fluid dynamics ; Computer applications ; Computer Simulation ; Congestive heart failure ; Damage ; Fluid dynamics ; Heart failure ; Heart Failure - physiopathology ; Heart transplantation ; Heart-Assist Devices - adverse effects ; Hemolysis ; Humans ; Hydrodynamics ; Hypertension ; Models, Theoretical ; Pressure head ; Pumps ; Shear stress ; Stress distribution ; Stress, Mechanical ; Thromboembolism ; Thrombosis ; Thrombosis - etiology ; Ventricle ; Ventricular assist devices</subject><ispartof>International journal of artificial organs, 2020-10, Vol.43 (10), p.653-662</ispartof><rights>The Author(s) 2020</rights><rights>Copyright Wichtig Editore s.r.l. Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-c0ab0c671e138e45f2b5a11a8709431e8606e22f9d65a04c9c363daca70ef8f93</citedby><cites>FETCH-LOGICAL-c421t-c0ab0c671e138e45f2b5a11a8709431e8606e22f9d65a04c9c363daca70ef8f93</cites><orcidid>0000-0003-0807-7195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0391398820903734$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0391398820903734$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,778,782,883,21802,27907,27908,43604,43605</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32043405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jiafeng</creatorcontrib><creatorcontrib>Chen, Zengsheng</creatorcontrib><creatorcontrib>Griffith, Bartley P</creatorcontrib><creatorcontrib>Wu, Zhongjun J</creatorcontrib><title>Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps</title><title>International journal of artificial organs</title><addtitle>Int J Artif Organs</addtitle><description>Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventricular assist devices is essential to improve the left ventricular assist device therapy for heart failure patients. The CH-VAD is a new maglev centrifugal left ventricular assist device. In this study, the CH-VAD pump was numerically analyzed and compared with the HVAD and HeartMate II pumps under two clinically relevant conditions (flow: 4.5 L/min, pressure head: normal ~80 and hypertension ~120 mmHg). The velocity and shear stress fields, washout, and hemolysis index of the three pumps were assessed with computational fluid dynamics analysis. Under the same condition, the CH-VAD hemolysis index was two times lower than the HVAD and HeartMate II pumps; the CH-VAD had the least percentage volume with shear stress larger than 100 Pa (i.e. normal condition: 0.4% vs HVAD 1.0%, and HeartMate II 2.9%). Under the normal condition, more than 98% was washed out of the three pumps within 0.4 s. The washout times were slightly shorter under the hypertension condition for the three pumps. No regions inside the CH-VAD or HVAD had extremely long residential time, while areas near the straightener of the HeartMate II pump had long residential time (>4 s) indicating elevated risks of thrombosis. The computational fluid dynamics results suggested that the CH-VAD pump has a better hemolytic biocompatibility than the HVAD and HeartMate II pumps under the normal and hypertension conditions.</description><subject>Biocompatibility</subject><subject>Blood cells</subject><subject>Bridge failure</subject><subject>Centrifugal pumps</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Congestive heart failure</subject><subject>Damage</subject><subject>Fluid dynamics</subject><subject>Heart failure</subject><subject>Heart Failure - physiopathology</subject><subject>Heart transplantation</subject><subject>Heart-Assist Devices - adverse effects</subject><subject>Hemolysis</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Hypertension</subject><subject>Models, Theoretical</subject><subject>Pressure head</subject><subject>Pumps</subject><subject>Shear stress</subject><subject>Stress distribution</subject><subject>Stress, Mechanical</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Thrombosis - etiology</subject><subject>Ventricle</subject><subject>Ventricular assist devices</subject><issn>0391-3988</issn><issn>1724-6040</issn><issn>1724-6040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxS0EokvpnROyxIVLih3_SXJC1Ra6K7XiAr1as86kmyqJg-1sBR-Az42zWwpUqmTJ0rzfvPH4EfKGs1POi-IDExUXVVnmrGKiEPIZWfAil5lmkj0ni1nOZv2IvArhljGupVQvyZHImRSSqQX5tXT9OEWIrRugo3YLHmxE3_7cl6hraNO5OwpDTTedczWtoYcbpKOLOMQ29SQkbpEOeEeT0uGOLlfZ9dk5Had-pDv0YQp7YjUXZ6MVgo9XEJGu13sqvCYvGugCntzfx-Tb509fk8_ll4v18uwyszLnMbMMNszqgiMXJUrV5BsFnENZsEoKjqVmGvO8qWqtgElbWaFFDRYKhk3ZVOKYfDz4jtOmx9qmFTx0ZvRtD_6HcdCa_5Wh3ZobtzOcK1lVenZ4f-_g3fcJQzR9Gyx2HQzopmByoYQquS5UQt89Qm_d5NM3J0qqlEE6PFHsQFnvQvDYPLyGMzOnbB6nnFre_rvFQ8OfWBOQHYCQovo79UnD30E5r4o</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Zhang, Jiafeng</creator><creator>Chen, Zengsheng</creator><creator>Griffith, Bartley P</creator><creator>Wu, Zhongjun J</creator><general>SAGE Publications</general><general>Wichtig Editore s.r.l</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0807-7195</orcidid></search><sort><creationdate>20201001</creationdate><title>Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps</title><author>Zhang, Jiafeng ; Chen, Zengsheng ; Griffith, Bartley P ; Wu, Zhongjun J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-c0ab0c671e138e45f2b5a11a8709431e8606e22f9d65a04c9c363daca70ef8f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Blood cells</topic><topic>Bridge failure</topic><topic>Centrifugal pumps</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Congestive heart failure</topic><topic>Damage</topic><topic>Fluid dynamics</topic><topic>Heart failure</topic><topic>Heart Failure - physiopathology</topic><topic>Heart transplantation</topic><topic>Heart-Assist Devices - adverse effects</topic><topic>Hemolysis</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Hypertension</topic><topic>Models, Theoretical</topic><topic>Pressure head</topic><topic>Pumps</topic><topic>Shear stress</topic><topic>Stress distribution</topic><topic>Stress, Mechanical</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Thrombosis - etiology</topic><topic>Ventricle</topic><topic>Ventricular assist devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiafeng</creatorcontrib><creatorcontrib>Chen, Zengsheng</creatorcontrib><creatorcontrib>Griffith, Bartley P</creatorcontrib><creatorcontrib>Wu, Zhongjun J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiafeng</au><au>Chen, Zengsheng</au><au>Griffith, Bartley P</au><au>Wu, Zhongjun J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps</atitle><jtitle>International journal of artificial organs</jtitle><addtitle>Int J Artif Organs</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>43</volume><issue>10</issue><spage>653</spage><epage>662</epage><pages>653-662</pages><issn>0391-3988</issn><issn>1724-6040</issn><eissn>1724-6040</eissn><abstract>Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventricular assist devices is essential to improve the left ventricular assist device therapy for heart failure patients. The CH-VAD is a new maglev centrifugal left ventricular assist device. In this study, the CH-VAD pump was numerically analyzed and compared with the HVAD and HeartMate II pumps under two clinically relevant conditions (flow: 4.5 L/min, pressure head: normal ~80 and hypertension ~120 mmHg). The velocity and shear stress fields, washout, and hemolysis index of the three pumps were assessed with computational fluid dynamics analysis. Under the same condition, the CH-VAD hemolysis index was two times lower than the HVAD and HeartMate II pumps; the CH-VAD had the least percentage volume with shear stress larger than 100 Pa (i.e. normal condition: 0.4% vs HVAD 1.0%, and HeartMate II 2.9%). Under the normal condition, more than 98% was washed out of the three pumps within 0.4 s. The washout times were slightly shorter under the hypertension condition for the three pumps. No regions inside the CH-VAD or HVAD had extremely long residential time, while areas near the straightener of the HeartMate II pump had long residential time (>4 s) indicating elevated risks of thrombosis. The computational fluid dynamics results suggested that the CH-VAD pump has a better hemolytic biocompatibility than the HVAD and HeartMate II pumps under the normal and hypertension conditions.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>32043405</pmid><doi>10.1177/0391398820903734</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0807-7195</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0391-3988 |
ispartof | International journal of artificial organs, 2020-10, Vol.43 (10), p.653-662 |
issn | 0391-3988 1724-6040 1724-6040 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11549969 |
source | MEDLINE; SAGE Complete A-Z List |
subjects | Biocompatibility Blood cells Bridge failure Centrifugal pumps Computational fluid dynamics Computer applications Computer Simulation Congestive heart failure Damage Fluid dynamics Heart failure Heart Failure - physiopathology Heart transplantation Heart-Assist Devices - adverse effects Hemolysis Humans Hydrodynamics Hypertension Models, Theoretical Pressure head Pumps Shear stress Stress distribution Stress, Mechanical Thromboembolism Thrombosis Thrombosis - etiology Ventricle Ventricular assist devices |
title | Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20characterization%20of%20flow%20and%20blood%20damage%20potential%20of%20the%20new%20maglev%20CH-VAD%20pump%20versus%20the%20HVAD%20and%20HeartMate%20II%20pumps&rft.jtitle=International%20journal%20of%20artificial%20organs&rft.au=Zhang,%20Jiafeng&rft.date=2020-10-01&rft.volume=43&rft.issue=10&rft.spage=653&rft.epage=662&rft.pages=653-662&rft.issn=0391-3988&rft.eissn=1724-6040&rft_id=info:doi/10.1177/0391398820903734&rft_dat=%3Cproquest_pubme%3E2353581675%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453203201&rft_id=info:pmid/32043405&rft_sage_id=10.1177_0391398820903734&rfr_iscdi=true |