Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps

Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of artificial organs 2020-10, Vol.43 (10), p.653-662
Hauptverfasser: Zhang, Jiafeng, Chen, Zengsheng, Griffith, Bartley P, Wu, Zhongjun J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 662
container_issue 10
container_start_page 653
container_title International journal of artificial organs
container_volume 43
creator Zhang, Jiafeng
Chen, Zengsheng
Griffith, Bartley P
Wu, Zhongjun J
description Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventricular assist devices is essential to improve the left ventricular assist device therapy for heart failure patients. The CH-VAD is a new maglev centrifugal left ventricular assist device. In this study, the CH-VAD pump was numerically analyzed and compared with the HVAD and HeartMate II pumps under two clinically relevant conditions (flow: 4.5 L/min, pressure head: normal ~80 and hypertension ~120 mmHg). The velocity and shear stress fields, washout, and hemolysis index of the three pumps were assessed with computational fluid dynamics analysis. Under the same condition, the CH-VAD hemolysis index was two times lower than the HVAD and HeartMate II pumps; the CH-VAD had the least percentage volume with shear stress larger than 100 Pa (i.e. normal condition: 0.4% vs HVAD 1.0%, and HeartMate II 2.9%). Under the normal condition, more than 98% was washed out of the three pumps within 0.4 s. The washout times were slightly shorter under the hypertension condition for the three pumps. No regions inside the CH-VAD or HVAD had extremely long residential time, while areas near the straightener of the HeartMate II pump had long residential time (>4 s) indicating elevated risks of thrombosis. The computational fluid dynamics results suggested that the CH-VAD pump has a better hemolytic biocompatibility than the HVAD and HeartMate II pumps under the normal and hypertension conditions.
doi_str_mv 10.1177/0391398820903734
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11549969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0391398820903734</sage_id><sourcerecordid>2353581675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-c0ab0c671e138e45f2b5a11a8709431e8606e22f9d65a04c9c363daca70ef8f93</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EokvpnROyxIVLih3_SXJC1Ra6K7XiAr1as86kmyqJg-1sBR-Az42zWwpUqmTJ0rzfvPH4EfKGs1POi-IDExUXVVnmrGKiEPIZWfAil5lmkj0ni1nOZv2IvArhljGupVQvyZHImRSSqQX5tXT9OEWIrRugo3YLHmxE3_7cl6hraNO5OwpDTTedczWtoYcbpKOLOMQ29SQkbpEOeEeT0uGOLlfZ9dk5Had-pDv0YQp7YjUXZ6MVgo9XEJGu13sqvCYvGugCntzfx-Tb509fk8_ll4v18uwyszLnMbMMNszqgiMXJUrV5BsFnENZsEoKjqVmGvO8qWqtgElbWaFFDRYKhk3ZVOKYfDz4jtOmx9qmFTx0ZvRtD_6HcdCa_5Wh3ZobtzOcK1lVenZ4f-_g3fcJQzR9Gyx2HQzopmByoYQquS5UQt89Qm_d5NM3J0qqlEE6PFHsQFnvQvDYPLyGMzOnbB6nnFre_rvFQ8OfWBOQHYCQovo79UnD30E5r4o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453203201</pqid></control><display><type>article</type><title>Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Zhang, Jiafeng ; Chen, Zengsheng ; Griffith, Bartley P ; Wu, Zhongjun J</creator><creatorcontrib>Zhang, Jiafeng ; Chen, Zengsheng ; Griffith, Bartley P ; Wu, Zhongjun J</creatorcontrib><description>Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventricular assist devices is essential to improve the left ventricular assist device therapy for heart failure patients. The CH-VAD is a new maglev centrifugal left ventricular assist device. In this study, the CH-VAD pump was numerically analyzed and compared with the HVAD and HeartMate II pumps under two clinically relevant conditions (flow: 4.5 L/min, pressure head: normal ~80 and hypertension ~120 mmHg). The velocity and shear stress fields, washout, and hemolysis index of the three pumps were assessed with computational fluid dynamics analysis. Under the same condition, the CH-VAD hemolysis index was two times lower than the HVAD and HeartMate II pumps; the CH-VAD had the least percentage volume with shear stress larger than 100 Pa (i.e. normal condition: 0.4% vs HVAD 1.0%, and HeartMate II 2.9%). Under the normal condition, more than 98% was washed out of the three pumps within 0.4 s. The washout times were slightly shorter under the hypertension condition for the three pumps. No regions inside the CH-VAD or HVAD had extremely long residential time, while areas near the straightener of the HeartMate II pump had long residential time (&gt;4 s) indicating elevated risks of thrombosis. The computational fluid dynamics results suggested that the CH-VAD pump has a better hemolytic biocompatibility than the HVAD and HeartMate II pumps under the normal and hypertension conditions.</description><identifier>ISSN: 0391-3988</identifier><identifier>ISSN: 1724-6040</identifier><identifier>EISSN: 1724-6040</identifier><identifier>DOI: 10.1177/0391398820903734</identifier><identifier>PMID: 32043405</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Biocompatibility ; Blood cells ; Bridge failure ; Centrifugal pumps ; Computational fluid dynamics ; Computer applications ; Computer Simulation ; Congestive heart failure ; Damage ; Fluid dynamics ; Heart failure ; Heart Failure - physiopathology ; Heart transplantation ; Heart-Assist Devices - adverse effects ; Hemolysis ; Humans ; Hydrodynamics ; Hypertension ; Models, Theoretical ; Pressure head ; Pumps ; Shear stress ; Stress distribution ; Stress, Mechanical ; Thromboembolism ; Thrombosis ; Thrombosis - etiology ; Ventricle ; Ventricular assist devices</subject><ispartof>International journal of artificial organs, 2020-10, Vol.43 (10), p.653-662</ispartof><rights>The Author(s) 2020</rights><rights>Copyright Wichtig Editore s.r.l. Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-c0ab0c671e138e45f2b5a11a8709431e8606e22f9d65a04c9c363daca70ef8f93</citedby><cites>FETCH-LOGICAL-c421t-c0ab0c671e138e45f2b5a11a8709431e8606e22f9d65a04c9c363daca70ef8f93</cites><orcidid>0000-0003-0807-7195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0391398820903734$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0391398820903734$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,778,782,883,21802,27907,27908,43604,43605</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32043405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jiafeng</creatorcontrib><creatorcontrib>Chen, Zengsheng</creatorcontrib><creatorcontrib>Griffith, Bartley P</creatorcontrib><creatorcontrib>Wu, Zhongjun J</creatorcontrib><title>Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps</title><title>International journal of artificial organs</title><addtitle>Int J Artif Organs</addtitle><description>Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventricular assist devices is essential to improve the left ventricular assist device therapy for heart failure patients. The CH-VAD is a new maglev centrifugal left ventricular assist device. In this study, the CH-VAD pump was numerically analyzed and compared with the HVAD and HeartMate II pumps under two clinically relevant conditions (flow: 4.5 L/min, pressure head: normal ~80 and hypertension ~120 mmHg). The velocity and shear stress fields, washout, and hemolysis index of the three pumps were assessed with computational fluid dynamics analysis. Under the same condition, the CH-VAD hemolysis index was two times lower than the HVAD and HeartMate II pumps; the CH-VAD had the least percentage volume with shear stress larger than 100 Pa (i.e. normal condition: 0.4% vs HVAD 1.0%, and HeartMate II 2.9%). Under the normal condition, more than 98% was washed out of the three pumps within 0.4 s. The washout times were slightly shorter under the hypertension condition for the three pumps. No regions inside the CH-VAD or HVAD had extremely long residential time, while areas near the straightener of the HeartMate II pump had long residential time (&gt;4 s) indicating elevated risks of thrombosis. The computational fluid dynamics results suggested that the CH-VAD pump has a better hemolytic biocompatibility than the HVAD and HeartMate II pumps under the normal and hypertension conditions.</description><subject>Biocompatibility</subject><subject>Blood cells</subject><subject>Bridge failure</subject><subject>Centrifugal pumps</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Congestive heart failure</subject><subject>Damage</subject><subject>Fluid dynamics</subject><subject>Heart failure</subject><subject>Heart Failure - physiopathology</subject><subject>Heart transplantation</subject><subject>Heart-Assist Devices - adverse effects</subject><subject>Hemolysis</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Hypertension</subject><subject>Models, Theoretical</subject><subject>Pressure head</subject><subject>Pumps</subject><subject>Shear stress</subject><subject>Stress distribution</subject><subject>Stress, Mechanical</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Thrombosis - etiology</subject><subject>Ventricle</subject><subject>Ventricular assist devices</subject><issn>0391-3988</issn><issn>1724-6040</issn><issn>1724-6040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxS0EokvpnROyxIVLih3_SXJC1Ra6K7XiAr1as86kmyqJg-1sBR-Az42zWwpUqmTJ0rzfvPH4EfKGs1POi-IDExUXVVnmrGKiEPIZWfAil5lmkj0ni1nOZv2IvArhljGupVQvyZHImRSSqQX5tXT9OEWIrRugo3YLHmxE3_7cl6hraNO5OwpDTTedczWtoYcbpKOLOMQ29SQkbpEOeEeT0uGOLlfZ9dk5Had-pDv0YQp7YjUXZ6MVgo9XEJGu13sqvCYvGugCntzfx-Tb509fk8_ll4v18uwyszLnMbMMNszqgiMXJUrV5BsFnENZsEoKjqVmGvO8qWqtgElbWaFFDRYKhk3ZVOKYfDz4jtOmx9qmFTx0ZvRtD_6HcdCa_5Wh3ZobtzOcK1lVenZ4f-_g3fcJQzR9Gyx2HQzopmByoYQquS5UQt89Qm_d5NM3J0qqlEE6PFHsQFnvQvDYPLyGMzOnbB6nnFre_rvFQ8OfWBOQHYCQovo79UnD30E5r4o</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Zhang, Jiafeng</creator><creator>Chen, Zengsheng</creator><creator>Griffith, Bartley P</creator><creator>Wu, Zhongjun J</creator><general>SAGE Publications</general><general>Wichtig Editore s.r.l</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0807-7195</orcidid></search><sort><creationdate>20201001</creationdate><title>Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps</title><author>Zhang, Jiafeng ; Chen, Zengsheng ; Griffith, Bartley P ; Wu, Zhongjun J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-c0ab0c671e138e45f2b5a11a8709431e8606e22f9d65a04c9c363daca70ef8f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Blood cells</topic><topic>Bridge failure</topic><topic>Centrifugal pumps</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Congestive heart failure</topic><topic>Damage</topic><topic>Fluid dynamics</topic><topic>Heart failure</topic><topic>Heart Failure - physiopathology</topic><topic>Heart transplantation</topic><topic>Heart-Assist Devices - adverse effects</topic><topic>Hemolysis</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Hypertension</topic><topic>Models, Theoretical</topic><topic>Pressure head</topic><topic>Pumps</topic><topic>Shear stress</topic><topic>Stress distribution</topic><topic>Stress, Mechanical</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Thrombosis - etiology</topic><topic>Ventricle</topic><topic>Ventricular assist devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiafeng</creatorcontrib><creatorcontrib>Chen, Zengsheng</creatorcontrib><creatorcontrib>Griffith, Bartley P</creatorcontrib><creatorcontrib>Wu, Zhongjun J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiafeng</au><au>Chen, Zengsheng</au><au>Griffith, Bartley P</au><au>Wu, Zhongjun J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps</atitle><jtitle>International journal of artificial organs</jtitle><addtitle>Int J Artif Organs</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>43</volume><issue>10</issue><spage>653</spage><epage>662</epage><pages>653-662</pages><issn>0391-3988</issn><issn>1724-6040</issn><eissn>1724-6040</eissn><abstract>Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventricular assist devices is essential to improve the left ventricular assist device therapy for heart failure patients. The CH-VAD is a new maglev centrifugal left ventricular assist device. In this study, the CH-VAD pump was numerically analyzed and compared with the HVAD and HeartMate II pumps under two clinically relevant conditions (flow: 4.5 L/min, pressure head: normal ~80 and hypertension ~120 mmHg). The velocity and shear stress fields, washout, and hemolysis index of the three pumps were assessed with computational fluid dynamics analysis. Under the same condition, the CH-VAD hemolysis index was two times lower than the HVAD and HeartMate II pumps; the CH-VAD had the least percentage volume with shear stress larger than 100 Pa (i.e. normal condition: 0.4% vs HVAD 1.0%, and HeartMate II 2.9%). Under the normal condition, more than 98% was washed out of the three pumps within 0.4 s. The washout times were slightly shorter under the hypertension condition for the three pumps. No regions inside the CH-VAD or HVAD had extremely long residential time, while areas near the straightener of the HeartMate II pump had long residential time (&gt;4 s) indicating elevated risks of thrombosis. The computational fluid dynamics results suggested that the CH-VAD pump has a better hemolytic biocompatibility than the HVAD and HeartMate II pumps under the normal and hypertension conditions.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>32043405</pmid><doi>10.1177/0391398820903734</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0807-7195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0391-3988
ispartof International journal of artificial organs, 2020-10, Vol.43 (10), p.653-662
issn 0391-3988
1724-6040
1724-6040
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11549969
source MEDLINE; SAGE Complete A-Z List
subjects Biocompatibility
Blood cells
Bridge failure
Centrifugal pumps
Computational fluid dynamics
Computer applications
Computer Simulation
Congestive heart failure
Damage
Fluid dynamics
Heart failure
Heart Failure - physiopathology
Heart transplantation
Heart-Assist Devices - adverse effects
Hemolysis
Humans
Hydrodynamics
Hypertension
Models, Theoretical
Pressure head
Pumps
Shear stress
Stress distribution
Stress, Mechanical
Thromboembolism
Thrombosis
Thrombosis - etiology
Ventricle
Ventricular assist devices
title Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20characterization%20of%20flow%20and%20blood%20damage%20potential%20of%20the%20new%20maglev%20CH-VAD%20pump%20versus%20the%20HVAD%20and%20HeartMate%20II%20pumps&rft.jtitle=International%20journal%20of%20artificial%20organs&rft.au=Zhang,%20Jiafeng&rft.date=2020-10-01&rft.volume=43&rft.issue=10&rft.spage=653&rft.epage=662&rft.pages=653-662&rft.issn=0391-3988&rft.eissn=1724-6040&rft_id=info:doi/10.1177/0391398820903734&rft_dat=%3Cproquest_pubme%3E2353581675%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453203201&rft_id=info:pmid/32043405&rft_sage_id=10.1177_0391398820903734&rfr_iscdi=true