Effect of Material and Structure of Ultra-High-Molecular-Weight Polyethylene Body Armor on Ballistic Limit Velocity: Numerical Simulation

The material properties and structural characteristics of ballistic composites are crucial to their ballistic performance. A numerical model of a 1.1 g FSP penetrating a UHMWPE target plate was established in this paper. The numerical results show that the failure process of the body armor target pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-10, Vol.16 (21), p.2985
Hauptverfasser: Bian, Jiang, Dai, Kaida, Lv, Xiaojiang, Huang, Zilu, Wu, Guangrun, Zhang, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 2985
container_title Polymers
container_volume 16
creator Bian, Jiang
Dai, Kaida
Lv, Xiaojiang
Huang, Zilu
Wu, Guangrun
Zhang, Yuan
description The material properties and structural characteristics of ballistic composites are crucial to their ballistic performance. A numerical model of a 1.1 g FSP penetrating a UHMWPE target plate was established in this paper. The numerical results show that the failure process of the body armor target plate primarily involves shear failure, interlayer delamination, and tensile failure. Based on this, further research was conducted on the influence of material properties and structural characteristics on the ballistic limit velocity of the UHMWPE armor plate. Furthermore, the study evaluates the effects of elastic modulus, tensile strength, shear strength, number of layers, and interlayer strength on the ballistic limit velocity of UHMWPE body armor. The findings reveal that the ballistic limit velocity is most sensitive to changes in shear strength, with variation rates ranging from -18% to +11%, showing an approximate positive correlation, while the elastic modulus has the smallest impact on ballistic limit velocity, with variation rates ranging from -2% to +4%. Additionally, appropriate interlayer strength can improve the ballistic limit velocity of the body armor to a certain extent. This study provides theoretical methods and recommendations for optimizing anti-penetration performance of UHMWPE body armor.
doi_str_mv 10.3390/polym16212985
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11548530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815421155</galeid><sourcerecordid>A815421155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-cdcaf376e13da311c53ca52c63eb46269b06fcaf9f9795fd5e930ffae651ca9e3</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEolXpkSuyxIVLih3HTswFbatCkbaAVArHyOuMd1059tZxkPIT-q87qy1Vi33wxzzzzjvSFMVbRk84V_TjNvp5YLJilWrFi-Kwog0vay7pyyf3g-J4HG8orlpIyZrXxQFXgrVMicPi7txaMJlESy51huS0Jzr05CqnyeQpwS5y7XPS5YVbb8rL6MFMXqfyD-A7k59oAfJm9hCAnMZ-Jos0xERiIKfaezdmZ8jSDS6T3-CjcXn-RL5PA5YyWOvKDaiWXQxvildW-xGOH86j4vrL-a-zi3L54-u3s8WyNLxmuTS90ZY3EhjvNWfMCG60qIzksKplJdWKSouIsqpRwvYCFKfWapCCGa2AHxWf97rbaTVAbyBgc77bJjfoNHdRu-55JLhNt45_O8ZE3QpOUeHDg0KKtxOMuRvcaMB7HSBOY8dZ1TZ1XdUM0ff_oTdxSgH721GSUgQrpE721Fp76FywEQsb3D0MzsQA1uH_okUDFboQmFDuE0yK45jAPtpntNtNRvdsMpB_97TnR_rfHPB7v-m3fQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126008742</pqid></control><display><type>article</type><title>Effect of Material and Structure of Ultra-High-Molecular-Weight Polyethylene Body Armor on Ballistic Limit Velocity: Numerical Simulation</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bian, Jiang ; Dai, Kaida ; Lv, Xiaojiang ; Huang, Zilu ; Wu, Guangrun ; Zhang, Yuan</creator><creatorcontrib>Bian, Jiang ; Dai, Kaida ; Lv, Xiaojiang ; Huang, Zilu ; Wu, Guangrun ; Zhang, Yuan</creatorcontrib><description>The material properties and structural characteristics of ballistic composites are crucial to their ballistic performance. A numerical model of a 1.1 g FSP penetrating a UHMWPE target plate was established in this paper. The numerical results show that the failure process of the body armor target plate primarily involves shear failure, interlayer delamination, and tensile failure. Based on this, further research was conducted on the influence of material properties and structural characteristics on the ballistic limit velocity of the UHMWPE armor plate. Furthermore, the study evaluates the effects of elastic modulus, tensile strength, shear strength, number of layers, and interlayer strength on the ballistic limit velocity of UHMWPE body armor. The findings reveal that the ballistic limit velocity is most sensitive to changes in shear strength, with variation rates ranging from -18% to +11%, showing an approximate positive correlation, while the elastic modulus has the smallest impact on ballistic limit velocity, with variation rates ranging from -2% to +4%. Additionally, appropriate interlayer strength can improve the ballistic limit velocity of the body armor to a certain extent. This study provides theoretical methods and recommendations for optimizing anti-penetration performance of UHMWPE body armor.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16212985</identifier><identifier>PMID: 39518195</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Antiballistic materials ; Armor ; Armor penetration ; Ballistic penetration ; Body armor ; Composite materials ; Deformation ; Elastic limit ; Elastic properties ; Energy dissipation ; Experiments ; Failure ; Interlayers ; Laminated materials ; Laminates ; Material properties ; Mechanical properties ; Modulus of elasticity ; Molecular structure ; Numerical analysis ; Numerical models ; Polyethylene ; Shear strength ; Simulation ; Simulation methods ; Tensile strength ; Ultra high molecular weight polyethylene ; Velocity</subject><ispartof>Polymers, 2024-10, Vol.16 (21), p.2985</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-cdcaf376e13da311c53ca52c63eb46269b06fcaf9f9795fd5e930ffae651ca9e3</cites><orcidid>0009-0008-6121-6522 ; 0000-0002-5507-5603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548530/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548530/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39518195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bian, Jiang</creatorcontrib><creatorcontrib>Dai, Kaida</creatorcontrib><creatorcontrib>Lv, Xiaojiang</creatorcontrib><creatorcontrib>Huang, Zilu</creatorcontrib><creatorcontrib>Wu, Guangrun</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><title>Effect of Material and Structure of Ultra-High-Molecular-Weight Polyethylene Body Armor on Ballistic Limit Velocity: Numerical Simulation</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>The material properties and structural characteristics of ballistic composites are crucial to their ballistic performance. A numerical model of a 1.1 g FSP penetrating a UHMWPE target plate was established in this paper. The numerical results show that the failure process of the body armor target plate primarily involves shear failure, interlayer delamination, and tensile failure. Based on this, further research was conducted on the influence of material properties and structural characteristics on the ballistic limit velocity of the UHMWPE armor plate. Furthermore, the study evaluates the effects of elastic modulus, tensile strength, shear strength, number of layers, and interlayer strength on the ballistic limit velocity of UHMWPE body armor. The findings reveal that the ballistic limit velocity is most sensitive to changes in shear strength, with variation rates ranging from -18% to +11%, showing an approximate positive correlation, while the elastic modulus has the smallest impact on ballistic limit velocity, with variation rates ranging from -2% to +4%. Additionally, appropriate interlayer strength can improve the ballistic limit velocity of the body armor to a certain extent. This study provides theoretical methods and recommendations for optimizing anti-penetration performance of UHMWPE body armor.</description><subject>Analysis</subject><subject>Antiballistic materials</subject><subject>Armor</subject><subject>Armor penetration</subject><subject>Ballistic penetration</subject><subject>Body armor</subject><subject>Composite materials</subject><subject>Deformation</subject><subject>Elastic limit</subject><subject>Elastic properties</subject><subject>Energy dissipation</subject><subject>Experiments</subject><subject>Failure</subject><subject>Interlayers</subject><subject>Laminated materials</subject><subject>Laminates</subject><subject>Material properties</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular structure</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Polyethylene</subject><subject>Shear strength</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Tensile strength</subject><subject>Ultra high molecular weight polyethylene</subject><subject>Velocity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkk1v1DAQhiMEolXpkSuyxIVLih3HTswFbatCkbaAVArHyOuMd1059tZxkPIT-q87qy1Vi33wxzzzzjvSFMVbRk84V_TjNvp5YLJilWrFi-Kwog0vay7pyyf3g-J4HG8orlpIyZrXxQFXgrVMicPi7txaMJlESy51huS0Jzr05CqnyeQpwS5y7XPS5YVbb8rL6MFMXqfyD-A7k59oAfJm9hCAnMZ-Jos0xERiIKfaezdmZ8jSDS6T3-CjcXn-RL5PA5YyWOvKDaiWXQxvildW-xGOH86j4vrL-a-zi3L54-u3s8WyNLxmuTS90ZY3EhjvNWfMCG60qIzksKplJdWKSouIsqpRwvYCFKfWapCCGa2AHxWf97rbaTVAbyBgc77bJjfoNHdRu-55JLhNt45_O8ZE3QpOUeHDg0KKtxOMuRvcaMB7HSBOY8dZ1TZ1XdUM0ff_oTdxSgH721GSUgQrpE721Fp76FywEQsb3D0MzsQA1uH_okUDFboQmFDuE0yK45jAPtpntNtNRvdsMpB_97TnR_rfHPB7v-m3fQ</recordid><startdate>20241024</startdate><enddate>20241024</enddate><creator>Bian, Jiang</creator><creator>Dai, Kaida</creator><creator>Lv, Xiaojiang</creator><creator>Huang, Zilu</creator><creator>Wu, Guangrun</creator><creator>Zhang, Yuan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0008-6121-6522</orcidid><orcidid>https://orcid.org/0000-0002-5507-5603</orcidid></search><sort><creationdate>20241024</creationdate><title>Effect of Material and Structure of Ultra-High-Molecular-Weight Polyethylene Body Armor on Ballistic Limit Velocity: Numerical Simulation</title><author>Bian, Jiang ; Dai, Kaida ; Lv, Xiaojiang ; Huang, Zilu ; Wu, Guangrun ; Zhang, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-cdcaf376e13da311c53ca52c63eb46269b06fcaf9f9795fd5e930ffae651ca9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Antiballistic materials</topic><topic>Armor</topic><topic>Armor penetration</topic><topic>Ballistic penetration</topic><topic>Body armor</topic><topic>Composite materials</topic><topic>Deformation</topic><topic>Elastic limit</topic><topic>Elastic properties</topic><topic>Energy dissipation</topic><topic>Experiments</topic><topic>Failure</topic><topic>Interlayers</topic><topic>Laminated materials</topic><topic>Laminates</topic><topic>Material properties</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular structure</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Polyethylene</topic><topic>Shear strength</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Tensile strength</topic><topic>Ultra high molecular weight polyethylene</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Jiang</creatorcontrib><creatorcontrib>Dai, Kaida</creatorcontrib><creatorcontrib>Lv, Xiaojiang</creatorcontrib><creatorcontrib>Huang, Zilu</creatorcontrib><creatorcontrib>Wu, Guangrun</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Jiang</au><au>Dai, Kaida</au><au>Lv, Xiaojiang</au><au>Huang, Zilu</au><au>Wu, Guangrun</au><au>Zhang, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Material and Structure of Ultra-High-Molecular-Weight Polyethylene Body Armor on Ballistic Limit Velocity: Numerical Simulation</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-10-24</date><risdate>2024</risdate><volume>16</volume><issue>21</issue><spage>2985</spage><pages>2985-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The material properties and structural characteristics of ballistic composites are crucial to their ballistic performance. A numerical model of a 1.1 g FSP penetrating a UHMWPE target plate was established in this paper. The numerical results show that the failure process of the body armor target plate primarily involves shear failure, interlayer delamination, and tensile failure. Based on this, further research was conducted on the influence of material properties and structural characteristics on the ballistic limit velocity of the UHMWPE armor plate. Furthermore, the study evaluates the effects of elastic modulus, tensile strength, shear strength, number of layers, and interlayer strength on the ballistic limit velocity of UHMWPE body armor. The findings reveal that the ballistic limit velocity is most sensitive to changes in shear strength, with variation rates ranging from -18% to +11%, showing an approximate positive correlation, while the elastic modulus has the smallest impact on ballistic limit velocity, with variation rates ranging from -2% to +4%. Additionally, appropriate interlayer strength can improve the ballistic limit velocity of the body armor to a certain extent. This study provides theoretical methods and recommendations for optimizing anti-penetration performance of UHMWPE body armor.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39518195</pmid><doi>10.3390/polym16212985</doi><orcidid>https://orcid.org/0009-0008-6121-6522</orcidid><orcidid>https://orcid.org/0000-0002-5507-5603</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2024-10, Vol.16 (21), p.2985
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11548530
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Antiballistic materials
Armor
Armor penetration
Ballistic penetration
Body armor
Composite materials
Deformation
Elastic limit
Elastic properties
Energy dissipation
Experiments
Failure
Interlayers
Laminated materials
Laminates
Material properties
Mechanical properties
Modulus of elasticity
Molecular structure
Numerical analysis
Numerical models
Polyethylene
Shear strength
Simulation
Simulation methods
Tensile strength
Ultra high molecular weight polyethylene
Velocity
title Effect of Material and Structure of Ultra-High-Molecular-Weight Polyethylene Body Armor on Ballistic Limit Velocity: Numerical Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Material%20and%20Structure%20of%20Ultra-High-Molecular-Weight%20Polyethylene%20Body%20Armor%20on%20Ballistic%20Limit%20Velocity:%20Numerical%20Simulation&rft.jtitle=Polymers&rft.au=Bian,%20Jiang&rft.date=2024-10-24&rft.volume=16&rft.issue=21&rft.spage=2985&rft.pages=2985-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16212985&rft_dat=%3Cgale_pubme%3EA815421155%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126008742&rft_id=info:pmid/39518195&rft_galeid=A815421155&rfr_iscdi=true