Conformational ensemble of yeast ATP synthase at low pH reveals unique intermediates and plasticity in F1–Fo coupling

Mitochondrial adenosine triphosphate (ATP) synthase uses the proton gradient across the inner mitochondrial membrane to synthesize ATP. Structural and single molecule studies conducted mostly at neutral or basic pH have provided details of the reaction mechanism of ATP synthesis. However, pH of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2024-04, Vol.31 (4), p.657-666
Hauptverfasser: Sharma, Stuti, Luo, Min, Patel, Hiral, Mueller, David M., Liao, Maofu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 666
container_issue 4
container_start_page 657
container_title Nature structural & molecular biology
container_volume 31
creator Sharma, Stuti
Luo, Min
Patel, Hiral
Mueller, David M.
Liao, Maofu
description Mitochondrial adenosine triphosphate (ATP) synthase uses the proton gradient across the inner mitochondrial membrane to synthesize ATP. Structural and single molecule studies conducted mostly at neutral or basic pH have provided details of the reaction mechanism of ATP synthesis. However, pH of the mitochondrial matrix is slightly acidic during hypoxia and pH-dependent conformational changes in the ATP synthase have been reported. Here we use single-particle cryo-EM to analyze the conformational ensemble of the yeast ( Saccharomyces cerevisiae ) ATP synthase at pH 6. Of the four conformations resolved in this study, three are reaction intermediates. In addition to canonical catalytic dwell and binding dwell structures, we identify two unique conformations with nearly identical positions of the central rotor but different catalytic site conformations. These structures provide new insights into the catalytic mechanism of the ATP synthase and highlight elastic coupling between the catalytic and proton translocating domains. Here the authors determined structures of the mitochondrial ATP synthase at pH 6, in four distinct conformations. The structures represent intermediates in the reaction cycle of the enzyme and provide insights into its elastic coupling mechanism.
doi_str_mv 10.1038/s41594-024-01219-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11542105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922947558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-985a78c048e492be610b407f602247695134b98ff79ffdd6431270a5c4b3bef93</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhS0EIiFwAVaW2LBp8G-3vULRiCFIkWAR1pa7pzxx5LYb251odtyBG3ISDBMFwYKFVZbqe09V9RB6SckbSrh6WwSVWnSEtUcZ1Z14hE6pFLLTWsnHD3_NT9CzUm4IYVIO_Ck64YrTXilyiu42KbqUZ1t9ijZgiAXmMQBODh_AlorPrz7jcoj12hbAtuKQ7vBygTPcgg0Fr9F_XQH7WCHPsPO2QsE27vASmtpPvh5aE2_pj2_ftwlPaV2Cj_vn6IlrcnhxX8_Ql-37q81Fd_npw8fN-WU3calr1_awg5qIUCA0G6GnZBRkcD1hTAy9lpSLUSvnBu3cbtcLTtlArJzEyEdwmp-hd0ffZR3beBPEmm0wS_azzQeTrDd_d6K_Nvt0a2g7HqNENofX9w45tU1LNbMvE4RgI6S1GKYZ02KQUjX01T_oTVpzO2sxnAhKKB0kaxQ7UlNOpWRwD9NQYn4Fa47Bmhas-R2sEU3Ej6LS4LiH_Mf6P6qfLyCmfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041011752</pqid></control><display><type>article</type><title>Conformational ensemble of yeast ATP synthase at low pH reveals unique intermediates and plasticity in F1–Fo coupling</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Sharma, Stuti ; Luo, Min ; Patel, Hiral ; Mueller, David M. ; Liao, Maofu</creator><creatorcontrib>Sharma, Stuti ; Luo, Min ; Patel, Hiral ; Mueller, David M. ; Liao, Maofu</creatorcontrib><description>Mitochondrial adenosine triphosphate (ATP) synthase uses the proton gradient across the inner mitochondrial membrane to synthesize ATP. Structural and single molecule studies conducted mostly at neutral or basic pH have provided details of the reaction mechanism of ATP synthesis. However, pH of the mitochondrial matrix is slightly acidic during hypoxia and pH-dependent conformational changes in the ATP synthase have been reported. Here we use single-particle cryo-EM to analyze the conformational ensemble of the yeast ( Saccharomyces cerevisiae ) ATP synthase at pH 6. Of the four conformations resolved in this study, three are reaction intermediates. In addition to canonical catalytic dwell and binding dwell structures, we identify two unique conformations with nearly identical positions of the central rotor but different catalytic site conformations. These structures provide new insights into the catalytic mechanism of the ATP synthase and highlight elastic coupling between the catalytic and proton translocating domains. Here the authors determined structures of the mitochondrial ATP synthase at pH 6, in four distinct conformations. The structures represent intermediates in the reaction cycle of the enzyme and provide insights into its elastic coupling mechanism.</description><identifier>ISSN: 1545-9993</identifier><identifier>ISSN: 1545-9985</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-024-01219-4</identifier><identifier>PMID: 38316880</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45/612/1237 ; 631/45/612/1240 ; 631/535/1258/1259 ; Adenosine triphosphate ; ATP ; ATP synthase ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Chemical synthesis ; Coupling ; Hypoxia ; Intermediates ; Life Sciences ; Membrane Biology ; Mitochondria ; pH effects ; Protein Structure ; Protons ; Reaction intermediates ; Reaction mechanisms ; Yeast ; Yeasts</subject><ispartof>Nature structural &amp; molecular biology, 2024-04, Vol.31 (4), p.657-666</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-985a78c048e492be610b407f602247695134b98ff79ffdd6431270a5c4b3bef93</cites><orcidid>0000-0002-1478-0445 ; 0000-0002-3481-450X ; 0000-0002-1180-0287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Sharma, Stuti</creatorcontrib><creatorcontrib>Luo, Min</creatorcontrib><creatorcontrib>Patel, Hiral</creatorcontrib><creatorcontrib>Mueller, David M.</creatorcontrib><creatorcontrib>Liao, Maofu</creatorcontrib><title>Conformational ensemble of yeast ATP synthase at low pH reveals unique intermediates and plasticity in F1–Fo coupling</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><description>Mitochondrial adenosine triphosphate (ATP) synthase uses the proton gradient across the inner mitochondrial membrane to synthesize ATP. Structural and single molecule studies conducted mostly at neutral or basic pH have provided details of the reaction mechanism of ATP synthesis. However, pH of the mitochondrial matrix is slightly acidic during hypoxia and pH-dependent conformational changes in the ATP synthase have been reported. Here we use single-particle cryo-EM to analyze the conformational ensemble of the yeast ( Saccharomyces cerevisiae ) ATP synthase at pH 6. Of the four conformations resolved in this study, three are reaction intermediates. In addition to canonical catalytic dwell and binding dwell structures, we identify two unique conformations with nearly identical positions of the central rotor but different catalytic site conformations. These structures provide new insights into the catalytic mechanism of the ATP synthase and highlight elastic coupling between the catalytic and proton translocating domains. Here the authors determined structures of the mitochondrial ATP synthase at pH 6, in four distinct conformations. The structures represent intermediates in the reaction cycle of the enzyme and provide insights into its elastic coupling mechanism.</description><subject>631/45/612/1237</subject><subject>631/45/612/1240</subject><subject>631/535/1258/1259</subject><subject>Adenosine triphosphate</subject><subject>ATP</subject><subject>ATP synthase</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Chemical synthesis</subject><subject>Coupling</subject><subject>Hypoxia</subject><subject>Intermediates</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Mitochondria</subject><subject>pH effects</subject><subject>Protein Structure</subject><subject>Protons</subject><subject>Reaction intermediates</subject><subject>Reaction mechanisms</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1545-9993</issn><issn>1545-9985</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1uFDEQhS0EIiFwAVaW2LBp8G-3vULRiCFIkWAR1pa7pzxx5LYb251odtyBG3ISDBMFwYKFVZbqe09V9RB6SckbSrh6WwSVWnSEtUcZ1Z14hE6pFLLTWsnHD3_NT9CzUm4IYVIO_Ck64YrTXilyiu42KbqUZ1t9ijZgiAXmMQBODh_AlorPrz7jcoj12hbAtuKQ7vBygTPcgg0Fr9F_XQH7WCHPsPO2QsE27vASmtpPvh5aE2_pj2_ftwlPaV2Cj_vn6IlrcnhxX8_Ql-37q81Fd_npw8fN-WU3calr1_awg5qIUCA0G6GnZBRkcD1hTAy9lpSLUSvnBu3cbtcLTtlArJzEyEdwmp-hd0ffZR3beBPEmm0wS_azzQeTrDd_d6K_Nvt0a2g7HqNENofX9w45tU1LNbMvE4RgI6S1GKYZ02KQUjX01T_oTVpzO2sxnAhKKB0kaxQ7UlNOpWRwD9NQYn4Fa47Bmhas-R2sEU3Ej6LS4LiH_Mf6P6qfLyCmfA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Sharma, Stuti</creator><creator>Luo, Min</creator><creator>Patel, Hiral</creator><creator>Mueller, David M.</creator><creator>Liao, Maofu</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1478-0445</orcidid><orcidid>https://orcid.org/0000-0002-3481-450X</orcidid><orcidid>https://orcid.org/0000-0002-1180-0287</orcidid></search><sort><creationdate>20240401</creationdate><title>Conformational ensemble of yeast ATP synthase at low pH reveals unique intermediates and plasticity in F1–Fo coupling</title><author>Sharma, Stuti ; Luo, Min ; Patel, Hiral ; Mueller, David M. ; Liao, Maofu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-985a78c048e492be610b407f602247695134b98ff79ffdd6431270a5c4b3bef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/45/612/1237</topic><topic>631/45/612/1240</topic><topic>631/535/1258/1259</topic><topic>Adenosine triphosphate</topic><topic>ATP</topic><topic>ATP synthase</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Chemical synthesis</topic><topic>Coupling</topic><topic>Hypoxia</topic><topic>Intermediates</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Mitochondria</topic><topic>pH effects</topic><topic>Protein Structure</topic><topic>Protons</topic><topic>Reaction intermediates</topic><topic>Reaction mechanisms</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Stuti</creatorcontrib><creatorcontrib>Luo, Min</creatorcontrib><creatorcontrib>Patel, Hiral</creatorcontrib><creatorcontrib>Mueller, David M.</creatorcontrib><creatorcontrib>Liao, Maofu</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Stuti</au><au>Luo, Min</au><au>Patel, Hiral</au><au>Mueller, David M.</au><au>Liao, Maofu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational ensemble of yeast ATP synthase at low pH reveals unique intermediates and plasticity in F1–Fo coupling</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>31</volume><issue>4</issue><spage>657</spage><epage>666</epage><pages>657-666</pages><issn>1545-9993</issn><issn>1545-9985</issn><eissn>1545-9985</eissn><abstract>Mitochondrial adenosine triphosphate (ATP) synthase uses the proton gradient across the inner mitochondrial membrane to synthesize ATP. Structural and single molecule studies conducted mostly at neutral or basic pH have provided details of the reaction mechanism of ATP synthesis. However, pH of the mitochondrial matrix is slightly acidic during hypoxia and pH-dependent conformational changes in the ATP synthase have been reported. Here we use single-particle cryo-EM to analyze the conformational ensemble of the yeast ( Saccharomyces cerevisiae ) ATP synthase at pH 6. Of the four conformations resolved in this study, three are reaction intermediates. In addition to canonical catalytic dwell and binding dwell structures, we identify two unique conformations with nearly identical positions of the central rotor but different catalytic site conformations. These structures provide new insights into the catalytic mechanism of the ATP synthase and highlight elastic coupling between the catalytic and proton translocating domains. Here the authors determined structures of the mitochondrial ATP synthase at pH 6, in four distinct conformations. The structures represent intermediates in the reaction cycle of the enzyme and provide insights into its elastic coupling mechanism.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>38316880</pmid><doi>10.1038/s41594-024-01219-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1478-0445</orcidid><orcidid>https://orcid.org/0000-0002-3481-450X</orcidid><orcidid>https://orcid.org/0000-0002-1180-0287</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2024-04, Vol.31 (4), p.657-666
issn 1545-9993
1545-9985
1545-9985
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11542105
source Nature; Alma/SFX Local Collection
subjects 631/45/612/1237
631/45/612/1240
631/535/1258/1259
Adenosine triphosphate
ATP
ATP synthase
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Chemical synthesis
Coupling
Hypoxia
Intermediates
Life Sciences
Membrane Biology
Mitochondria
pH effects
Protein Structure
Protons
Reaction intermediates
Reaction mechanisms
Yeast
Yeasts
title Conformational ensemble of yeast ATP synthase at low pH reveals unique intermediates and plasticity in F1–Fo coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20ensemble%20of%20yeast%20ATP%20synthase%20at%20low%20pH%20reveals%20unique%20intermediates%20and%20plasticity%20in%20F1%E2%80%93Fo%20coupling&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Sharma,%20Stuti&rft.date=2024-04-01&rft.volume=31&rft.issue=4&rft.spage=657&rft.epage=666&rft.pages=657-666&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-024-01219-4&rft_dat=%3Cproquest_pubme%3E2922947558%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041011752&rft_id=info:pmid/38316880&rfr_iscdi=true