Unearthing the hidden links: Investigating the functional connectivity between amygdala subregions and brain networks in bipolar disorder through resting-state fMRI

Bipolar disorder is a multifaceted psychiatric condition characterized by fluctuating activity levels and dysfunctional mood states, oscillating between manic and depressive episodes. These mood disturbances are accompanied by persistent functional and cognitive impairments, even during periods of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-10, Vol.10 (19), p.e38115, Article e38115
Hauptverfasser: Alahmadi, Adnan, Alali, Ashjan G., Alzhrani, Bayan M., Alzhrani, Reema S., Alsharif, Walaa, Aldahery, Shrooq, Banaja, Duaa, Aldusary, Njoud, Alghamdi, Jamaan, Kanbayti, Ibrahem H., Hakami, Norah Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bipolar disorder is a multifaceted psychiatric condition characterized by fluctuating activity levels and dysfunctional mood states, oscillating between manic and depressive episodes. These mood disturbances are accompanied by persistent functional and cognitive impairments, even during periods of euthymia. Prior studies have underscored the critical role of amygdala activity in the pathophysiology of bipolar disorder. This research aims to utilize resting-state functional Magnetic Resonance Imaging (rs-fMRI) to explore the functional modifications in the six sub-regions that compose the amygdala of individuals diagnosed with bipolar disorder. The study encompassed 80 participants, bifurcated into two groups: 40 individuals with bipolar disorder and 40 healthy controls. Each group comprised an equal gender distribution of 20 females and 20 males, ranging in age from 21 to 50 years. Using rs-fMRI, we examined the functional connectivity within six amygdala sub-regions across eight regional functional networks. Comparative analysis between the control group and the bipolar patients revealed that all six amygdala sub-regions demonstrated connectivity with the eight functional brain networks. Notable similarities and disparities were observed in the connectivity patterns between the bipolar group and controls, particularly within the amygdala's sub-regions and other brain networks. The most significant functional connectivity alterations were found with the salience network and the default mode network. Additionally, alterations in the functional connectivity between the amygdala, sensory-motor, and visual networks were noted in bipolar patients. The study's findings highlight the distinct patterns of resting-state functional connectivity of the amygdala and various brain networks in differentiating bipolar patients from healthy controls. These variations suggest the existence of multiple pathophysiological mechanisms contributing to emotional dysregulation in bipolar disorder.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e38115