Crossed laser phase plates for transmission electron microscopy

For decades since the development of phase-contrast optical microscopy, an analogous approach has been sought for maximizing the image contrast of weakly-scattering objects in transmission electron microscopy (TEM). The recent development of the laser phase plate (LPP) has demonstrated that an ampli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ArXiv.org 2024-10
Hauptverfasser: Petrov, Petar N, Zhang, Jessie T, Axelrod, Jeremy J, Müller, Holger
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title ArXiv.org
container_volume
creator Petrov, Petar N
Zhang, Jessie T
Axelrod, Jeremy J
Müller, Holger
description For decades since the development of phase-contrast optical microscopy, an analogous approach has been sought for maximizing the image contrast of weakly-scattering objects in transmission electron microscopy (TEM). The recent development of the laser phase plate (LPP) has demonstrated that an amplified, focused laser standing wave provides stable, tunable phase shift to the high-energy electron beam, achieving phase-contrast TEM. Building on proof-of-concept experimental demonstrations, this paper explores design improvements tailored to biological imaging. In particular, we introduce the approach of crossed laser phase plates (XLPP): two laser standing waves intersecting in the diffraction plane of the TEM, rather than a single beam as in the current LPP. We provide a theoretical model for the XLPP inside the microscope and use simulations to quantify its effect on image formation. We find that the XLPP increases information transfer at low spatial frequencies while also suppressing the ghost images formed by Kapitza-Dirac diffraction of the electron beam by the laser beam. We also demonstrate a simple acquisition scheme, enabled by the XLPP, which dramatically suppresses unwanted diffraction effects. The results of this study chart the course for future developments of LPP hardware.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11527100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123076987</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1120-324c4eec8e73b07ee03fbebcefa9d2cc088090b4cb218630d71bce89463cfe8c3</originalsourceid><addsrcrecordid>eNpVUE1LxDAQDaK4su5fkB69FCaZtklPiyx-wYIXPYc0nbqVtKlJV9h_b8BV1tN78GbeezNn7Eog8lwVQpyf8AVbxfgBAKKSoizxki2wLhRiCVdsvQk-RmozZyKFbNolyCZnZopZ50M2BzPGoY-x92NGjuwcEhl6m9asnw7X7KIzLtLqiEv29nD_unnKty-Pz5u7bT5xLiBHUdiCyCqS2IAkAuwaaix1pm6FtaAU1NAUthFcVQit5ElUdVGh7UhZXLL1j--0bwZqLY2pmdNT6AcTDtqbXv9Xxn6n3_2X5rwUkgMkh9ujQ_Cfe4qzTmdZcs6M5PdRIxcIsqqVTKM3p2F_Kb9vw2-CVG0R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123076987</pqid></control><display><type>article</type><title>Crossed laser phase plates for transmission electron microscopy</title><source>Free E- Journals</source><creator>Petrov, Petar N ; Zhang, Jessie T ; Axelrod, Jeremy J ; Müller, Holger</creator><creatorcontrib>Petrov, Petar N ; Zhang, Jessie T ; Axelrod, Jeremy J ; Müller, Holger</creatorcontrib><description>For decades since the development of phase-contrast optical microscopy, an analogous approach has been sought for maximizing the image contrast of weakly-scattering objects in transmission electron microscopy (TEM). The recent development of the laser phase plate (LPP) has demonstrated that an amplified, focused laser standing wave provides stable, tunable phase shift to the high-energy electron beam, achieving phase-contrast TEM. Building on proof-of-concept experimental demonstrations, this paper explores design improvements tailored to biological imaging. In particular, we introduce the approach of crossed laser phase plates (XLPP): two laser standing waves intersecting in the diffraction plane of the TEM, rather than a single beam as in the current LPP. We provide a theoretical model for the XLPP inside the microscope and use simulations to quantify its effect on image formation. We find that the XLPP increases information transfer at low spatial frequencies while also suppressing the ghost images formed by Kapitza-Dirac diffraction of the electron beam by the laser beam. We also demonstrate a simple acquisition scheme, enabled by the XLPP, which dramatically suppresses unwanted diffraction effects. The results of this study chart the course for future developments of LPP hardware.</description><identifier>ISSN: 2331-8422</identifier><identifier>EISSN: 2331-8422</identifier><identifier>PMID: 39483350</identifier><language>eng</language><publisher>United States: Cornell University</publisher><ispartof>ArXiv.org, 2024-10</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39483350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrov, Petar N</creatorcontrib><creatorcontrib>Zhang, Jessie T</creatorcontrib><creatorcontrib>Axelrod, Jeremy J</creatorcontrib><creatorcontrib>Müller, Holger</creatorcontrib><title>Crossed laser phase plates for transmission electron microscopy</title><title>ArXiv.org</title><addtitle>ArXiv</addtitle><description>For decades since the development of phase-contrast optical microscopy, an analogous approach has been sought for maximizing the image contrast of weakly-scattering objects in transmission electron microscopy (TEM). The recent development of the laser phase plate (LPP) has demonstrated that an amplified, focused laser standing wave provides stable, tunable phase shift to the high-energy electron beam, achieving phase-contrast TEM. Building on proof-of-concept experimental demonstrations, this paper explores design improvements tailored to biological imaging. In particular, we introduce the approach of crossed laser phase plates (XLPP): two laser standing waves intersecting in the diffraction plane of the TEM, rather than a single beam as in the current LPP. We provide a theoretical model for the XLPP inside the microscope and use simulations to quantify its effect on image formation. We find that the XLPP increases information transfer at low spatial frequencies while also suppressing the ghost images formed by Kapitza-Dirac diffraction of the electron beam by the laser beam. We also demonstrate a simple acquisition scheme, enabled by the XLPP, which dramatically suppresses unwanted diffraction effects. The results of this study chart the course for future developments of LPP hardware.</description><issn>2331-8422</issn><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUE1LxDAQDaK4su5fkB69FCaZtklPiyx-wYIXPYc0nbqVtKlJV9h_b8BV1tN78GbeezNn7Eog8lwVQpyf8AVbxfgBAKKSoizxki2wLhRiCVdsvQk-RmozZyKFbNolyCZnZopZ50M2BzPGoY-x92NGjuwcEhl6m9asnw7X7KIzLtLqiEv29nD_unnKty-Pz5u7bT5xLiBHUdiCyCqS2IAkAuwaaix1pm6FtaAU1NAUthFcVQit5ElUdVGh7UhZXLL1j--0bwZqLY2pmdNT6AcTDtqbXv9Xxn6n3_2X5rwUkgMkh9ujQ_Cfe4qzTmdZcs6M5PdRIxcIsqqVTKM3p2F_Kb9vw2-CVG0R</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>Petrov, Petar N</creator><creator>Zhang, Jessie T</creator><creator>Axelrod, Jeremy J</creator><creator>Müller, Holger</creator><general>Cornell University</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241029</creationdate><title>Crossed laser phase plates for transmission electron microscopy</title><author>Petrov, Petar N ; Zhang, Jessie T ; Axelrod, Jeremy J ; Müller, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1120-324c4eec8e73b07ee03fbebcefa9d2cc088090b4cb218630d71bce89463cfe8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Petrov, Petar N</creatorcontrib><creatorcontrib>Zhang, Jessie T</creatorcontrib><creatorcontrib>Axelrod, Jeremy J</creatorcontrib><creatorcontrib>Müller, Holger</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ArXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrov, Petar N</au><au>Zhang, Jessie T</au><au>Axelrod, Jeremy J</au><au>Müller, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crossed laser phase plates for transmission electron microscopy</atitle><jtitle>ArXiv.org</jtitle><addtitle>ArXiv</addtitle><date>2024-10-29</date><risdate>2024</risdate><issn>2331-8422</issn><eissn>2331-8422</eissn><abstract>For decades since the development of phase-contrast optical microscopy, an analogous approach has been sought for maximizing the image contrast of weakly-scattering objects in transmission electron microscopy (TEM). The recent development of the laser phase plate (LPP) has demonstrated that an amplified, focused laser standing wave provides stable, tunable phase shift to the high-energy electron beam, achieving phase-contrast TEM. Building on proof-of-concept experimental demonstrations, this paper explores design improvements tailored to biological imaging. In particular, we introduce the approach of crossed laser phase plates (XLPP): two laser standing waves intersecting in the diffraction plane of the TEM, rather than a single beam as in the current LPP. We provide a theoretical model for the XLPP inside the microscope and use simulations to quantify its effect on image formation. We find that the XLPP increases information transfer at low spatial frequencies while also suppressing the ghost images formed by Kapitza-Dirac diffraction of the electron beam by the laser beam. We also demonstrate a simple acquisition scheme, enabled by the XLPP, which dramatically suppresses unwanted diffraction effects. The results of this study chart the course for future developments of LPP hardware.</abstract><cop>United States</cop><pub>Cornell University</pub><pmid>39483350</pmid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2331-8422
ispartof ArXiv.org, 2024-10
issn 2331-8422
2331-8422
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11527100
source Free E- Journals
title Crossed laser phase plates for transmission electron microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crossed%20laser%20phase%20plates%20for%20transmission%20electron%20microscopy&rft.jtitle=ArXiv.org&rft.au=Petrov,%20Petar%20N&rft.date=2024-10-29&rft.issn=2331-8422&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E3123076987%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123076987&rft_id=info:pmid/39483350&rfr_iscdi=true