Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis

Loss-of-function mutations in the tumour suppressor APC are an initial step in intestinal tumorigenesis 1 , 2 . APC -mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-10, Vol.634 (8036), p.1196-1203
Hauptverfasser: Sadien, Iannish D., Adler, Sam, Mehmed, Shenay, Bailey, Sasha, Sawle, Ashley, Couturier, Dominique-Laurent, Eldridge, Matthew, Adams, David J., Kemp, Richard, Lourenço, Filipe C., Winton, Douglas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1203
container_issue 8036
container_start_page 1196
container_title Nature (London)
container_volume 634
creator Sadien, Iannish D.
Adler, Sam
Mehmed, Shenay
Bailey, Sasha
Sawle, Ashley
Couturier, Dominique-Laurent
Eldridge, Matthew
Adams, David J.
Kemp, Richard
Lourenço, Filipe C.
Winton, Douglas J.
description Loss-of-function mutations in the tumour suppressor APC are an initial step in intestinal tumorigenesis 1 , 2 . APC -mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants 3 – 5 . Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process 6 , 7 . Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct Apc mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic Kras mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones. Multicolour lineage tracing and mutagenesis studies in a mouse model show that many intestinal tumours are polyclonal, with multiple clones exhibiting independent Apc mutations driven by differences in KRAS and MYC signalling.
doi_str_mv 10.1038/s41586-024-08053-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11525183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122644567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e16499a11c743927524f374baed5d895f994a162770fe4db26bb90a9e02687e3</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhi3UCraUP8ChypFL2vG3fUKIj7bSSu2Bu-Ukk8Uoibd2stL--5ouILj05MP7zDueh5BzCl8pcPMtCyqNqoGJGgxIXsMRWVGhVS2U0R_ICoCZEnF1Qj7l_AgAkmpxTE64FdowUCty8zsO-3aIkx_CvK_iDlMbR8xVH-YJc64an1LAlKswVVfbtu5S2OFUzcsYU9hgYUL-TD72fsh49vyekvu72_vrH_X61_ef11fruuXMzDVSJaz1lLZacMu0ZKLnWjQeO9kZK3trhaeKaQ09iq5hqmkseIvAyj3IT8nloXa7NCN2LU5z8oPbpjD6tHfRB_c-mcKD28Sdo1QySQ0vDRfPDSn-WTDPbgy5xWHwE8YlO04ZU0JIpQvKDmibYs4J-9c9FNyTfnfQ74p-90-_gzL05e0PX0defBeAH4BcommDyT3GJRX5-X-1fwGn-5G6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122644567</pqid></control><display><type>article</type><title>Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Sadien, Iannish D. ; Adler, Sam ; Mehmed, Shenay ; Bailey, Sasha ; Sawle, Ashley ; Couturier, Dominique-Laurent ; Eldridge, Matthew ; Adams, David J. ; Kemp, Richard ; Lourenço, Filipe C. ; Winton, Douglas J.</creator><creatorcontrib>Sadien, Iannish D. ; Adler, Sam ; Mehmed, Shenay ; Bailey, Sasha ; Sawle, Ashley ; Couturier, Dominique-Laurent ; Eldridge, Matthew ; Adams, David J. ; Kemp, Richard ; Lourenço, Filipe C. ; Winton, Douglas J.</creatorcontrib><description>Loss-of-function mutations in the tumour suppressor APC are an initial step in intestinal tumorigenesis 1 , 2 . APC -mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants 3 – 5 . Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process 6 , 7 . Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct Apc mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic Kras mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones. Multicolour lineage tracing and mutagenesis studies in a mouse model show that many intestinal tumours are polyclonal, with multiple clones exhibiting independent Apc mutations driven by differences in KRAS and MYC signalling.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-08053-0</identifier><identifier>PMID: 39478206</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/32 ; 45/100 ; 45/23 ; 45/41 ; 45/62 ; 45/70 ; 45/91 ; 631/208/68 ; 631/67/1504/1885 ; 631/67/71 ; Adenomatous Polyposis Coli Protein - genetics ; Adenomatous Polyposis Coli Protein - metabolism ; Animals ; Cell Lineage ; Cell Transformation, Neoplastic - genetics ; Cell Transformation, Neoplastic - pathology ; Clone Cells - metabolism ; Clone Cells - pathology ; Disease Progression ; Female ; Genes, APC ; Genetic Fitness - genetics ; Humanities and Social Sciences ; Humans ; Intestinal Neoplasms - genetics ; Intestinal Neoplasms - metabolism ; Intestinal Neoplasms - pathology ; Loss of Function Mutation - genetics ; Male ; Mice ; multidisciplinary ; Mutation ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Proto-Oncogene Proteins c-myc - genetics ; Proto-Oncogene Proteins c-myc - metabolism ; Proto-Oncogene Proteins p21(ras) - genetics ; Proto-Oncogene Proteins p21(ras) - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction ; Transcription, Genetic</subject><ispartof>Nature (London), 2024-10, Vol.634 (8036), p.1196-1203</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-e16499a11c743927524f374baed5d895f994a162770fe4db26bb90a9e02687e3</cites><orcidid>0000-0001-6067-7927 ; 0009-0006-2178-618X ; 0000-0002-3367-1252 ; 0000-0001-5774-5036 ; 0000-0002-2985-5059 ; 0000-0002-9655-2488 ; 0000-0001-9490-0306 ; 0000-0002-5799-8911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-08053-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-08053-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39478206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadien, Iannish D.</creatorcontrib><creatorcontrib>Adler, Sam</creatorcontrib><creatorcontrib>Mehmed, Shenay</creatorcontrib><creatorcontrib>Bailey, Sasha</creatorcontrib><creatorcontrib>Sawle, Ashley</creatorcontrib><creatorcontrib>Couturier, Dominique-Laurent</creatorcontrib><creatorcontrib>Eldridge, Matthew</creatorcontrib><creatorcontrib>Adams, David J.</creatorcontrib><creatorcontrib>Kemp, Richard</creatorcontrib><creatorcontrib>Lourenço, Filipe C.</creatorcontrib><creatorcontrib>Winton, Douglas J.</creatorcontrib><title>Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Loss-of-function mutations in the tumour suppressor APC are an initial step in intestinal tumorigenesis 1 , 2 . APC -mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants 3 – 5 . Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process 6 , 7 . Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct Apc mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic Kras mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones. Multicolour lineage tracing and mutagenesis studies in a mouse model show that many intestinal tumours are polyclonal, with multiple clones exhibiting independent Apc mutations driven by differences in KRAS and MYC signalling.</description><subject>38/32</subject><subject>45/100</subject><subject>45/23</subject><subject>45/41</subject><subject>45/62</subject><subject>45/70</subject><subject>45/91</subject><subject>631/208/68</subject><subject>631/67/1504/1885</subject><subject>631/67/71</subject><subject>Adenomatous Polyposis Coli Protein - genetics</subject><subject>Adenomatous Polyposis Coli Protein - metabolism</subject><subject>Animals</subject><subject>Cell Lineage</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cell Transformation, Neoplastic - pathology</subject><subject>Clone Cells - metabolism</subject><subject>Clone Cells - pathology</subject><subject>Disease Progression</subject><subject>Female</subject><subject>Genes, APC</subject><subject>Genetic Fitness - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Intestinal Neoplasms - genetics</subject><subject>Intestinal Neoplasms - metabolism</subject><subject>Intestinal Neoplasms - pathology</subject><subject>Loss of Function Mutation - genetics</subject><subject>Male</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Proto-Oncogene Proteins p21(ras) - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Transcription, Genetic</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhi3UCraUP8ChypFL2vG3fUKIj7bSSu2Bu-Ukk8Uoibd2stL--5ouILj05MP7zDueh5BzCl8pcPMtCyqNqoGJGgxIXsMRWVGhVS2U0R_ICoCZEnF1Qj7l_AgAkmpxTE64FdowUCty8zsO-3aIkx_CvK_iDlMbR8xVH-YJc64an1LAlKswVVfbtu5S2OFUzcsYU9hgYUL-TD72fsh49vyekvu72_vrH_X61_ef11fruuXMzDVSJaz1lLZacMu0ZKLnWjQeO9kZK3trhaeKaQ09iq5hqmkseIvAyj3IT8nloXa7NCN2LU5z8oPbpjD6tHfRB_c-mcKD28Sdo1QySQ0vDRfPDSn-WTDPbgy5xWHwE8YlO04ZU0JIpQvKDmibYs4J-9c9FNyTfnfQ74p-90-_gzL05e0PX0defBeAH4BcommDyT3GJRX5-X-1fwGn-5G6</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Sadien, Iannish D.</creator><creator>Adler, Sam</creator><creator>Mehmed, Shenay</creator><creator>Bailey, Sasha</creator><creator>Sawle, Ashley</creator><creator>Couturier, Dominique-Laurent</creator><creator>Eldridge, Matthew</creator><creator>Adams, David J.</creator><creator>Kemp, Richard</creator><creator>Lourenço, Filipe C.</creator><creator>Winton, Douglas J.</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6067-7927</orcidid><orcidid>https://orcid.org/0009-0006-2178-618X</orcidid><orcidid>https://orcid.org/0000-0002-3367-1252</orcidid><orcidid>https://orcid.org/0000-0001-5774-5036</orcidid><orcidid>https://orcid.org/0000-0002-2985-5059</orcidid><orcidid>https://orcid.org/0000-0002-9655-2488</orcidid><orcidid>https://orcid.org/0000-0001-9490-0306</orcidid><orcidid>https://orcid.org/0000-0002-5799-8911</orcidid></search><sort><creationdate>20241031</creationdate><title>Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis</title><author>Sadien, Iannish D. ; Adler, Sam ; Mehmed, Shenay ; Bailey, Sasha ; Sawle, Ashley ; Couturier, Dominique-Laurent ; Eldridge, Matthew ; Adams, David J. ; Kemp, Richard ; Lourenço, Filipe C. ; Winton, Douglas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e16499a11c743927524f374baed5d895f994a162770fe4db26bb90a9e02687e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/32</topic><topic>45/100</topic><topic>45/23</topic><topic>45/41</topic><topic>45/62</topic><topic>45/70</topic><topic>45/91</topic><topic>631/208/68</topic><topic>631/67/1504/1885</topic><topic>631/67/71</topic><topic>Adenomatous Polyposis Coli Protein - genetics</topic><topic>Adenomatous Polyposis Coli Protein - metabolism</topic><topic>Animals</topic><topic>Cell Lineage</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cell Transformation, Neoplastic - pathology</topic><topic>Clone Cells - metabolism</topic><topic>Clone Cells - pathology</topic><topic>Disease Progression</topic><topic>Female</topic><topic>Genes, APC</topic><topic>Genetic Fitness - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Intestinal Neoplasms - genetics</topic><topic>Intestinal Neoplasms - metabolism</topic><topic>Intestinal Neoplasms - pathology</topic><topic>Loss of Function Mutation - genetics</topic><topic>Male</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Proto-Oncogene Proteins p21(ras) - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadien, Iannish D.</creatorcontrib><creatorcontrib>Adler, Sam</creatorcontrib><creatorcontrib>Mehmed, Shenay</creatorcontrib><creatorcontrib>Bailey, Sasha</creatorcontrib><creatorcontrib>Sawle, Ashley</creatorcontrib><creatorcontrib>Couturier, Dominique-Laurent</creatorcontrib><creatorcontrib>Eldridge, Matthew</creatorcontrib><creatorcontrib>Adams, David J.</creatorcontrib><creatorcontrib>Kemp, Richard</creatorcontrib><creatorcontrib>Lourenço, Filipe C.</creatorcontrib><creatorcontrib>Winton, Douglas J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadien, Iannish D.</au><au>Adler, Sam</au><au>Mehmed, Shenay</au><au>Bailey, Sasha</au><au>Sawle, Ashley</au><au>Couturier, Dominique-Laurent</au><au>Eldridge, Matthew</au><au>Adams, David J.</au><au>Kemp, Richard</au><au>Lourenço, Filipe C.</au><au>Winton, Douglas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-10-31</date><risdate>2024</risdate><volume>634</volume><issue>8036</issue><spage>1196</spage><epage>1203</epage><pages>1196-1203</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Loss-of-function mutations in the tumour suppressor APC are an initial step in intestinal tumorigenesis 1 , 2 . APC -mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants 3 – 5 . Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process 6 , 7 . Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct Apc mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic Kras mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones. Multicolour lineage tracing and mutagenesis studies in a mouse model show that many intestinal tumours are polyclonal, with multiple clones exhibiting independent Apc mutations driven by differences in KRAS and MYC signalling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39478206</pmid><doi>10.1038/s41586-024-08053-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6067-7927</orcidid><orcidid>https://orcid.org/0009-0006-2178-618X</orcidid><orcidid>https://orcid.org/0000-0002-3367-1252</orcidid><orcidid>https://orcid.org/0000-0001-5774-5036</orcidid><orcidid>https://orcid.org/0000-0002-2985-5059</orcidid><orcidid>https://orcid.org/0000-0002-9655-2488</orcidid><orcidid>https://orcid.org/0000-0001-9490-0306</orcidid><orcidid>https://orcid.org/0000-0002-5799-8911</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-10, Vol.634 (8036), p.1196-1203
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11525183
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 38/32
45/100
45/23
45/41
45/62
45/70
45/91
631/208/68
631/67/1504/1885
631/67/71
Adenomatous Polyposis Coli Protein - genetics
Adenomatous Polyposis Coli Protein - metabolism
Animals
Cell Lineage
Cell Transformation, Neoplastic - genetics
Cell Transformation, Neoplastic - pathology
Clone Cells - metabolism
Clone Cells - pathology
Disease Progression
Female
Genes, APC
Genetic Fitness - genetics
Humanities and Social Sciences
Humans
Intestinal Neoplasms - genetics
Intestinal Neoplasms - metabolism
Intestinal Neoplasms - pathology
Loss of Function Mutation - genetics
Male
Mice
multidisciplinary
Mutation
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Proto-Oncogene Proteins c-myc - genetics
Proto-Oncogene Proteins c-myc - metabolism
Proto-Oncogene Proteins p21(ras) - genetics
Proto-Oncogene Proteins p21(ras) - metabolism
Science
Science (multidisciplinary)
Signal Transduction
Transcription, Genetic
title Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyclonality%20overcomes%20fitness%20barriers%20in%20Apc-driven%20tumorigenesis&rft.jtitle=Nature%20(London)&rft.au=Sadien,%20Iannish%20D.&rft.date=2024-10-31&rft.volume=634&rft.issue=8036&rft.spage=1196&rft.epage=1203&rft.pages=1196-1203&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-08053-0&rft_dat=%3Cproquest_pubme%3E3122644567%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122644567&rft_id=info:pmid/39478206&rfr_iscdi=true