Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis
Loss-of-function mutations in the tumour suppressor APC are an initial step in intestinal tumorigenesis 1 , 2 . APC -mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mu...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-10, Vol.634 (8036), p.1196-1203 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1203 |
---|---|
container_issue | 8036 |
container_start_page | 1196 |
container_title | Nature (London) |
container_volume | 634 |
creator | Sadien, Iannish D. Adler, Sam Mehmed, Shenay Bailey, Sasha Sawle, Ashley Couturier, Dominique-Laurent Eldridge, Matthew Adams, David J. Kemp, Richard Lourenço, Filipe C. Winton, Douglas J. |
description | Loss-of-function mutations in the tumour suppressor
APC
are an initial step in intestinal tumorigenesis
1
,
2
.
APC
-mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants
3
–
5
. Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process
6
,
7
. Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct
Apc
mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic
Kras
mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones.
Multicolour lineage tracing and mutagenesis studies in a mouse model show that many intestinal tumours are polyclonal, with multiple clones exhibiting independent
Apc
mutations driven by differences in KRAS and MYC signalling. |
doi_str_mv | 10.1038/s41586-024-08053-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11525183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122644567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e16499a11c743927524f374baed5d895f994a162770fe4db26bb90a9e02687e3</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhi3UCraUP8ChypFL2vG3fUKIj7bSSu2Bu-Ukk8Uoibd2stL--5ouILj05MP7zDueh5BzCl8pcPMtCyqNqoGJGgxIXsMRWVGhVS2U0R_ICoCZEnF1Qj7l_AgAkmpxTE64FdowUCty8zsO-3aIkx_CvK_iDlMbR8xVH-YJc64an1LAlKswVVfbtu5S2OFUzcsYU9hgYUL-TD72fsh49vyekvu72_vrH_X61_ef11fruuXMzDVSJaz1lLZacMu0ZKLnWjQeO9kZK3trhaeKaQ09iq5hqmkseIvAyj3IT8nloXa7NCN2LU5z8oPbpjD6tHfRB_c-mcKD28Sdo1QySQ0vDRfPDSn-WTDPbgy5xWHwE8YlO04ZU0JIpQvKDmibYs4J-9c9FNyTfnfQ74p-90-_gzL05e0PX0defBeAH4BcommDyT3GJRX5-X-1fwGn-5G6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122644567</pqid></control><display><type>article</type><title>Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Sadien, Iannish D. ; Adler, Sam ; Mehmed, Shenay ; Bailey, Sasha ; Sawle, Ashley ; Couturier, Dominique-Laurent ; Eldridge, Matthew ; Adams, David J. ; Kemp, Richard ; Lourenço, Filipe C. ; Winton, Douglas J.</creator><creatorcontrib>Sadien, Iannish D. ; Adler, Sam ; Mehmed, Shenay ; Bailey, Sasha ; Sawle, Ashley ; Couturier, Dominique-Laurent ; Eldridge, Matthew ; Adams, David J. ; Kemp, Richard ; Lourenço, Filipe C. ; Winton, Douglas J.</creatorcontrib><description>Loss-of-function mutations in the tumour suppressor
APC
are an initial step in intestinal tumorigenesis
1
,
2
.
APC
-mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants
3
–
5
. Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process
6
,
7
. Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct
Apc
mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic
Kras
mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones.
Multicolour lineage tracing and mutagenesis studies in a mouse model show that many intestinal tumours are polyclonal, with multiple clones exhibiting independent
Apc
mutations driven by differences in KRAS and MYC signalling.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-08053-0</identifier><identifier>PMID: 39478206</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/32 ; 45/100 ; 45/23 ; 45/41 ; 45/62 ; 45/70 ; 45/91 ; 631/208/68 ; 631/67/1504/1885 ; 631/67/71 ; Adenomatous Polyposis Coli Protein - genetics ; Adenomatous Polyposis Coli Protein - metabolism ; Animals ; Cell Lineage ; Cell Transformation, Neoplastic - genetics ; Cell Transformation, Neoplastic - pathology ; Clone Cells - metabolism ; Clone Cells - pathology ; Disease Progression ; Female ; Genes, APC ; Genetic Fitness - genetics ; Humanities and Social Sciences ; Humans ; Intestinal Neoplasms - genetics ; Intestinal Neoplasms - metabolism ; Intestinal Neoplasms - pathology ; Loss of Function Mutation - genetics ; Male ; Mice ; multidisciplinary ; Mutation ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Proto-Oncogene Proteins c-myc - genetics ; Proto-Oncogene Proteins c-myc - metabolism ; Proto-Oncogene Proteins p21(ras) - genetics ; Proto-Oncogene Proteins p21(ras) - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction ; Transcription, Genetic</subject><ispartof>Nature (London), 2024-10, Vol.634 (8036), p.1196-1203</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-e16499a11c743927524f374baed5d895f994a162770fe4db26bb90a9e02687e3</cites><orcidid>0000-0001-6067-7927 ; 0009-0006-2178-618X ; 0000-0002-3367-1252 ; 0000-0001-5774-5036 ; 0000-0002-2985-5059 ; 0000-0002-9655-2488 ; 0000-0001-9490-0306 ; 0000-0002-5799-8911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-08053-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-08053-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39478206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadien, Iannish D.</creatorcontrib><creatorcontrib>Adler, Sam</creatorcontrib><creatorcontrib>Mehmed, Shenay</creatorcontrib><creatorcontrib>Bailey, Sasha</creatorcontrib><creatorcontrib>Sawle, Ashley</creatorcontrib><creatorcontrib>Couturier, Dominique-Laurent</creatorcontrib><creatorcontrib>Eldridge, Matthew</creatorcontrib><creatorcontrib>Adams, David J.</creatorcontrib><creatorcontrib>Kemp, Richard</creatorcontrib><creatorcontrib>Lourenço, Filipe C.</creatorcontrib><creatorcontrib>Winton, Douglas J.</creatorcontrib><title>Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Loss-of-function mutations in the tumour suppressor
APC
are an initial step in intestinal tumorigenesis
1
,
2
.
APC
-mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants
3
–
5
. Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process
6
,
7
. Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct
Apc
mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic
Kras
mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones.
Multicolour lineage tracing and mutagenesis studies in a mouse model show that many intestinal tumours are polyclonal, with multiple clones exhibiting independent
Apc
mutations driven by differences in KRAS and MYC signalling.</description><subject>38/32</subject><subject>45/100</subject><subject>45/23</subject><subject>45/41</subject><subject>45/62</subject><subject>45/70</subject><subject>45/91</subject><subject>631/208/68</subject><subject>631/67/1504/1885</subject><subject>631/67/71</subject><subject>Adenomatous Polyposis Coli Protein - genetics</subject><subject>Adenomatous Polyposis Coli Protein - metabolism</subject><subject>Animals</subject><subject>Cell Lineage</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cell Transformation, Neoplastic - pathology</subject><subject>Clone Cells - metabolism</subject><subject>Clone Cells - pathology</subject><subject>Disease Progression</subject><subject>Female</subject><subject>Genes, APC</subject><subject>Genetic Fitness - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Intestinal Neoplasms - genetics</subject><subject>Intestinal Neoplasms - metabolism</subject><subject>Intestinal Neoplasms - pathology</subject><subject>Loss of Function Mutation - genetics</subject><subject>Male</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Proto-Oncogene Proteins p21(ras) - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Transcription, Genetic</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhi3UCraUP8ChypFL2vG3fUKIj7bSSu2Bu-Ukk8Uoibd2stL--5ouILj05MP7zDueh5BzCl8pcPMtCyqNqoGJGgxIXsMRWVGhVS2U0R_ICoCZEnF1Qj7l_AgAkmpxTE64FdowUCty8zsO-3aIkx_CvK_iDlMbR8xVH-YJc64an1LAlKswVVfbtu5S2OFUzcsYU9hgYUL-TD72fsh49vyekvu72_vrH_X61_ef11fruuXMzDVSJaz1lLZacMu0ZKLnWjQeO9kZK3trhaeKaQ09iq5hqmkseIvAyj3IT8nloXa7NCN2LU5z8oPbpjD6tHfRB_c-mcKD28Sdo1QySQ0vDRfPDSn-WTDPbgy5xWHwE8YlO04ZU0JIpQvKDmibYs4J-9c9FNyTfnfQ74p-90-_gzL05e0PX0defBeAH4BcommDyT3GJRX5-X-1fwGn-5G6</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Sadien, Iannish D.</creator><creator>Adler, Sam</creator><creator>Mehmed, Shenay</creator><creator>Bailey, Sasha</creator><creator>Sawle, Ashley</creator><creator>Couturier, Dominique-Laurent</creator><creator>Eldridge, Matthew</creator><creator>Adams, David J.</creator><creator>Kemp, Richard</creator><creator>Lourenço, Filipe C.</creator><creator>Winton, Douglas J.</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6067-7927</orcidid><orcidid>https://orcid.org/0009-0006-2178-618X</orcidid><orcidid>https://orcid.org/0000-0002-3367-1252</orcidid><orcidid>https://orcid.org/0000-0001-5774-5036</orcidid><orcidid>https://orcid.org/0000-0002-2985-5059</orcidid><orcidid>https://orcid.org/0000-0002-9655-2488</orcidid><orcidid>https://orcid.org/0000-0001-9490-0306</orcidid><orcidid>https://orcid.org/0000-0002-5799-8911</orcidid></search><sort><creationdate>20241031</creationdate><title>Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis</title><author>Sadien, Iannish D. ; Adler, Sam ; Mehmed, Shenay ; Bailey, Sasha ; Sawle, Ashley ; Couturier, Dominique-Laurent ; Eldridge, Matthew ; Adams, David J. ; Kemp, Richard ; Lourenço, Filipe C. ; Winton, Douglas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e16499a11c743927524f374baed5d895f994a162770fe4db26bb90a9e02687e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/32</topic><topic>45/100</topic><topic>45/23</topic><topic>45/41</topic><topic>45/62</topic><topic>45/70</topic><topic>45/91</topic><topic>631/208/68</topic><topic>631/67/1504/1885</topic><topic>631/67/71</topic><topic>Adenomatous Polyposis Coli Protein - genetics</topic><topic>Adenomatous Polyposis Coli Protein - metabolism</topic><topic>Animals</topic><topic>Cell Lineage</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cell Transformation, Neoplastic - pathology</topic><topic>Clone Cells - metabolism</topic><topic>Clone Cells - pathology</topic><topic>Disease Progression</topic><topic>Female</topic><topic>Genes, APC</topic><topic>Genetic Fitness - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Intestinal Neoplasms - genetics</topic><topic>Intestinal Neoplasms - metabolism</topic><topic>Intestinal Neoplasms - pathology</topic><topic>Loss of Function Mutation - genetics</topic><topic>Male</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Proto-Oncogene Proteins p21(ras) - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadien, Iannish D.</creatorcontrib><creatorcontrib>Adler, Sam</creatorcontrib><creatorcontrib>Mehmed, Shenay</creatorcontrib><creatorcontrib>Bailey, Sasha</creatorcontrib><creatorcontrib>Sawle, Ashley</creatorcontrib><creatorcontrib>Couturier, Dominique-Laurent</creatorcontrib><creatorcontrib>Eldridge, Matthew</creatorcontrib><creatorcontrib>Adams, David J.</creatorcontrib><creatorcontrib>Kemp, Richard</creatorcontrib><creatorcontrib>Lourenço, Filipe C.</creatorcontrib><creatorcontrib>Winton, Douglas J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadien, Iannish D.</au><au>Adler, Sam</au><au>Mehmed, Shenay</au><au>Bailey, Sasha</au><au>Sawle, Ashley</au><au>Couturier, Dominique-Laurent</au><au>Eldridge, Matthew</au><au>Adams, David J.</au><au>Kemp, Richard</au><au>Lourenço, Filipe C.</au><au>Winton, Douglas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-10-31</date><risdate>2024</risdate><volume>634</volume><issue>8036</issue><spage>1196</spage><epage>1203</epage><pages>1196-1203</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Loss-of-function mutations in the tumour suppressor
APC
are an initial step in intestinal tumorigenesis
1
,
2
.
APC
-mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants
3
–
5
. Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process
6
,
7
. Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct
Apc
mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic
Kras
mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones.
Multicolour lineage tracing and mutagenesis studies in a mouse model show that many intestinal tumours are polyclonal, with multiple clones exhibiting independent
Apc
mutations driven by differences in KRAS and MYC signalling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39478206</pmid><doi>10.1038/s41586-024-08053-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6067-7927</orcidid><orcidid>https://orcid.org/0009-0006-2178-618X</orcidid><orcidid>https://orcid.org/0000-0002-3367-1252</orcidid><orcidid>https://orcid.org/0000-0001-5774-5036</orcidid><orcidid>https://orcid.org/0000-0002-2985-5059</orcidid><orcidid>https://orcid.org/0000-0002-9655-2488</orcidid><orcidid>https://orcid.org/0000-0001-9490-0306</orcidid><orcidid>https://orcid.org/0000-0002-5799-8911</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-10, Vol.634 (8036), p.1196-1203 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11525183 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 38/32 45/100 45/23 45/41 45/62 45/70 45/91 631/208/68 631/67/1504/1885 631/67/71 Adenomatous Polyposis Coli Protein - genetics Adenomatous Polyposis Coli Protein - metabolism Animals Cell Lineage Cell Transformation, Neoplastic - genetics Cell Transformation, Neoplastic - pathology Clone Cells - metabolism Clone Cells - pathology Disease Progression Female Genes, APC Genetic Fitness - genetics Humanities and Social Sciences Humans Intestinal Neoplasms - genetics Intestinal Neoplasms - metabolism Intestinal Neoplasms - pathology Loss of Function Mutation - genetics Male Mice multidisciplinary Mutation Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology Proto-Oncogene Proteins c-myc - genetics Proto-Oncogene Proteins c-myc - metabolism Proto-Oncogene Proteins p21(ras) - genetics Proto-Oncogene Proteins p21(ras) - metabolism Science Science (multidisciplinary) Signal Transduction Transcription, Genetic |
title | Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyclonality%20overcomes%20fitness%20barriers%20in%20Apc-driven%20tumorigenesis&rft.jtitle=Nature%20(London)&rft.au=Sadien,%20Iannish%20D.&rft.date=2024-10-31&rft.volume=634&rft.issue=8036&rft.spage=1196&rft.epage=1203&rft.pages=1196-1203&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-08053-0&rft_dat=%3Cproquest_pubme%3E3122644567%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122644567&rft_id=info:pmid/39478206&rfr_iscdi=true |