Cutting-Edge PCN-ZnO Nanocomposites with Experimental and DFT Insights into Enhanced Hydrogen Evolution Reaction

Polymeric carbon nitride (PCN) and PCN-ZnO nanocomposites are promising candidates for catalysis, particularly for hydrogen evolution reactions (HER). However, their catalytic efficiency requires enhancement to fully realize their potential. This study aims to improve the HER performance of PCN by s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2024-10, Vol.7 (20), p.9402-9413
Hauptverfasser: Som, Narayan N., Opalinska, Agnieszka, Chandel, Madhurya, Pataniya, Pratik M., Koltsov, Iwona, Smalc-Koziorowska, Julita, Swiderska-Sroda, Anna, Gierlotka, Stanislaw, CK, Sumesh, Lojkowski, Witold
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9413
container_issue 20
container_start_page 9402
container_title ACS applied energy materials
container_volume 7
creator Som, Narayan N.
Opalinska, Agnieszka
Chandel, Madhurya
Pataniya, Pratik M.
Koltsov, Iwona
Smalc-Koziorowska, Julita
Swiderska-Sroda, Anna
Gierlotka, Stanislaw
CK, Sumesh
Lojkowski, Witold
description Polymeric carbon nitride (PCN) and PCN-ZnO nanocomposites are promising candidates for catalysis, particularly for hydrogen evolution reactions (HER). However, their catalytic efficiency requires enhancement to fully realize their potential. This study aims to improve the HER performance of PCN by synthesizing PCN-ZnO nanocomposites using melamine as a precursor. Two synthesis methods were employed: thermal condensation (Method 1) and liquid exfoliation (Method 2). Method 1 resulted in a composite with a 2.44 eV energy gap and reduced particle size, with significantly enhanced performance as a bifunctional electrocatalyst for simultaneous hydrogen and oxygen production. In contrast, Method 2 produced a nanocomposite with an enhanced surface area and a minor alteration in the band gap. In alkaline electrolytes, the PCN-ZnO0.4 nanocomposite synthesized with Method 1 exhibited high HER performance with an overpotential of 281 mV, outperforming pristine PCN (382 mV) and ZnO (302 mV), along with improved oxygen evolution reaction (OER) activity. Further analysis in a two-electrode alkaline electrolyzer using PCN-ZnO0.4 nanocomposite as both the anode and cathode demonstrated its promise as a bifunctional electrocatalyst. Density functional theory (DFT) calculations explained the enhanced catalytic activity of the PCN-ZnO nanocomposite, confirming that hydrogen evolution occurs through the Heyrovsky process, consistent with experimental results. Notably, the solar-to-hydrogen (STH) efficiency of the PCN-ZnO nanocomposite was four times greater, at 21.7% compared to 5.2% for the PCN monolayer, underscoring its potential for efficient solar-driven hydrogen production. This work paves the way for future advancements in the design of high-performance electrocatalysts for sustainable energy applications.
doi_str_mv 10.1021/acsaem.4c01932
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11523037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123075763</sourcerecordid><originalsourceid>FETCH-LOGICAL-a311t-90a3160acea10974d0c65c597c0a43cb720cc1145e613fec7cb94c1cd07cf8363</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhq0KBAi4cqx8rJCyHcdJvD5V1RIKEgKE4MLF8k68WaPETmOHln9fo90iOHCakeaZdz5eQk4YzBjk7LvGoE0_KxCY5PkXcpCXoshAVvnOu3yfHIfwBJAgVuVS7pF9Lot5AXM4IMNiitG6Nqub1tDbxXX26G7otXYefT_4YKMJ9I-Na1r_Hcxoe-Oi7qh2DT07v6eXLth2HQO1Lnpau7V2aBp68dKMvjWO1s--m6L1jt4Zja_JEdld6S6Y4208JA_n9f3iIru6-XW5-HmVac5YzCSkWIFGoxlIUTSAVYmlFAi64LgUOSAyVpSmYnxlUOBSFsiwAYGrOa_4Ifmx0R2mZW8aTHuPulNDOkGPL8prqz5WnF2r1j8rxsqcAxdJ4dtWYfS_JxOi6m1A03XaGT8FxVniRCkqntDZBsXRhzCa1dscBurVKrWxSm2tSg1f32_3hv83JgGnGyA1qic_jS496zO1fw7Ln-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123075763</pqid></control><display><type>article</type><title>Cutting-Edge PCN-ZnO Nanocomposites with Experimental and DFT Insights into Enhanced Hydrogen Evolution Reaction</title><source>American Chemical Society (ACS) Journals</source><creator>Som, Narayan N. ; Opalinska, Agnieszka ; Chandel, Madhurya ; Pataniya, Pratik M. ; Koltsov, Iwona ; Smalc-Koziorowska, Julita ; Swiderska-Sroda, Anna ; Gierlotka, Stanislaw ; CK, Sumesh ; Lojkowski, Witold</creator><creatorcontrib>Som, Narayan N. ; Opalinska, Agnieszka ; Chandel, Madhurya ; Pataniya, Pratik M. ; Koltsov, Iwona ; Smalc-Koziorowska, Julita ; Swiderska-Sroda, Anna ; Gierlotka, Stanislaw ; CK, Sumesh ; Lojkowski, Witold</creatorcontrib><description>Polymeric carbon nitride (PCN) and PCN-ZnO nanocomposites are promising candidates for catalysis, particularly for hydrogen evolution reactions (HER). However, their catalytic efficiency requires enhancement to fully realize their potential. This study aims to improve the HER performance of PCN by synthesizing PCN-ZnO nanocomposites using melamine as a precursor. Two synthesis methods were employed: thermal condensation (Method 1) and liquid exfoliation (Method 2). Method 1 resulted in a composite with a 2.44 eV energy gap and reduced particle size, with significantly enhanced performance as a bifunctional electrocatalyst for simultaneous hydrogen and oxygen production. In contrast, Method 2 produced a nanocomposite with an enhanced surface area and a minor alteration in the band gap. In alkaline electrolytes, the PCN-ZnO0.4 nanocomposite synthesized with Method 1 exhibited high HER performance with an overpotential of 281 mV, outperforming pristine PCN (382 mV) and ZnO (302 mV), along with improved oxygen evolution reaction (OER) activity. Further analysis in a two-electrode alkaline electrolyzer using PCN-ZnO0.4 nanocomposite as both the anode and cathode demonstrated its promise as a bifunctional electrocatalyst. Density functional theory (DFT) calculations explained the enhanced catalytic activity of the PCN-ZnO nanocomposite, confirming that hydrogen evolution occurs through the Heyrovsky process, consistent with experimental results. Notably, the solar-to-hydrogen (STH) efficiency of the PCN-ZnO nanocomposite was four times greater, at 21.7% compared to 5.2% for the PCN monolayer, underscoring its potential for efficient solar-driven hydrogen production. This work paves the way for future advancements in the design of high-performance electrocatalysts for sustainable energy applications.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.4c01932</identifier><identifier>PMID: 39484080</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied energy materials, 2024-10, Vol.7 (20), p.9402-9413</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society.</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a311t-90a3160acea10974d0c65c597c0a43cb720cc1145e613fec7cb94c1cd07cf8363</cites><orcidid>0000-0001-8521-0688 ; 0000-0002-1460-7861 ; 0000-0001-6035-9312 ; 0000-0002-8783-4846 ; 0000-0002-5858-5895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.4c01932$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.4c01932$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39484080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Som, Narayan N.</creatorcontrib><creatorcontrib>Opalinska, Agnieszka</creatorcontrib><creatorcontrib>Chandel, Madhurya</creatorcontrib><creatorcontrib>Pataniya, Pratik M.</creatorcontrib><creatorcontrib>Koltsov, Iwona</creatorcontrib><creatorcontrib>Smalc-Koziorowska, Julita</creatorcontrib><creatorcontrib>Swiderska-Sroda, Anna</creatorcontrib><creatorcontrib>Gierlotka, Stanislaw</creatorcontrib><creatorcontrib>CK, Sumesh</creatorcontrib><creatorcontrib>Lojkowski, Witold</creatorcontrib><title>Cutting-Edge PCN-ZnO Nanocomposites with Experimental and DFT Insights into Enhanced Hydrogen Evolution Reaction</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Polymeric carbon nitride (PCN) and PCN-ZnO nanocomposites are promising candidates for catalysis, particularly for hydrogen evolution reactions (HER). However, their catalytic efficiency requires enhancement to fully realize their potential. This study aims to improve the HER performance of PCN by synthesizing PCN-ZnO nanocomposites using melamine as a precursor. Two synthesis methods were employed: thermal condensation (Method 1) and liquid exfoliation (Method 2). Method 1 resulted in a composite with a 2.44 eV energy gap and reduced particle size, with significantly enhanced performance as a bifunctional electrocatalyst for simultaneous hydrogen and oxygen production. In contrast, Method 2 produced a nanocomposite with an enhanced surface area and a minor alteration in the band gap. In alkaline electrolytes, the PCN-ZnO0.4 nanocomposite synthesized with Method 1 exhibited high HER performance with an overpotential of 281 mV, outperforming pristine PCN (382 mV) and ZnO (302 mV), along with improved oxygen evolution reaction (OER) activity. Further analysis in a two-electrode alkaline electrolyzer using PCN-ZnO0.4 nanocomposite as both the anode and cathode demonstrated its promise as a bifunctional electrocatalyst. Density functional theory (DFT) calculations explained the enhanced catalytic activity of the PCN-ZnO nanocomposite, confirming that hydrogen evolution occurs through the Heyrovsky process, consistent with experimental results. Notably, the solar-to-hydrogen (STH) efficiency of the PCN-ZnO nanocomposite was four times greater, at 21.7% compared to 5.2% for the PCN monolayer, underscoring its potential for efficient solar-driven hydrogen production. This work paves the way for future advancements in the design of high-performance electrocatalysts for sustainable energy applications.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1P3DAQhq0KBAi4cqx8rJCyHcdJvD5V1RIKEgKE4MLF8k68WaPETmOHln9fo90iOHCakeaZdz5eQk4YzBjk7LvGoE0_KxCY5PkXcpCXoshAVvnOu3yfHIfwBJAgVuVS7pF9Lot5AXM4IMNiitG6Nqub1tDbxXX26G7otXYefT_4YKMJ9I-Na1r_Hcxoe-Oi7qh2DT07v6eXLth2HQO1Lnpau7V2aBp68dKMvjWO1s--m6L1jt4Zja_JEdld6S6Y4208JA_n9f3iIru6-XW5-HmVac5YzCSkWIFGoxlIUTSAVYmlFAi64LgUOSAyVpSmYnxlUOBSFsiwAYGrOa_4Ifmx0R2mZW8aTHuPulNDOkGPL8prqz5WnF2r1j8rxsqcAxdJ4dtWYfS_JxOi6m1A03XaGT8FxVniRCkqntDZBsXRhzCa1dscBurVKrWxSm2tSg1f32_3hv83JgGnGyA1qic_jS496zO1fw7Ln-w</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Som, Narayan N.</creator><creator>Opalinska, Agnieszka</creator><creator>Chandel, Madhurya</creator><creator>Pataniya, Pratik M.</creator><creator>Koltsov, Iwona</creator><creator>Smalc-Koziorowska, Julita</creator><creator>Swiderska-Sroda, Anna</creator><creator>Gierlotka, Stanislaw</creator><creator>CK, Sumesh</creator><creator>Lojkowski, Witold</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8521-0688</orcidid><orcidid>https://orcid.org/0000-0002-1460-7861</orcidid><orcidid>https://orcid.org/0000-0001-6035-9312</orcidid><orcidid>https://orcid.org/0000-0002-8783-4846</orcidid><orcidid>https://orcid.org/0000-0002-5858-5895</orcidid></search><sort><creationdate>20241028</creationdate><title>Cutting-Edge PCN-ZnO Nanocomposites with Experimental and DFT Insights into Enhanced Hydrogen Evolution Reaction</title><author>Som, Narayan N. ; Opalinska, Agnieszka ; Chandel, Madhurya ; Pataniya, Pratik M. ; Koltsov, Iwona ; Smalc-Koziorowska, Julita ; Swiderska-Sroda, Anna ; Gierlotka, Stanislaw ; CK, Sumesh ; Lojkowski, Witold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a311t-90a3160acea10974d0c65c597c0a43cb720cc1145e613fec7cb94c1cd07cf8363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Som, Narayan N.</creatorcontrib><creatorcontrib>Opalinska, Agnieszka</creatorcontrib><creatorcontrib>Chandel, Madhurya</creatorcontrib><creatorcontrib>Pataniya, Pratik M.</creatorcontrib><creatorcontrib>Koltsov, Iwona</creatorcontrib><creatorcontrib>Smalc-Koziorowska, Julita</creatorcontrib><creatorcontrib>Swiderska-Sroda, Anna</creatorcontrib><creatorcontrib>Gierlotka, Stanislaw</creatorcontrib><creatorcontrib>CK, Sumesh</creatorcontrib><creatorcontrib>Lojkowski, Witold</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Som, Narayan N.</au><au>Opalinska, Agnieszka</au><au>Chandel, Madhurya</au><au>Pataniya, Pratik M.</au><au>Koltsov, Iwona</au><au>Smalc-Koziorowska, Julita</au><au>Swiderska-Sroda, Anna</au><au>Gierlotka, Stanislaw</au><au>CK, Sumesh</au><au>Lojkowski, Witold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cutting-Edge PCN-ZnO Nanocomposites with Experimental and DFT Insights into Enhanced Hydrogen Evolution Reaction</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-10-28</date><risdate>2024</risdate><volume>7</volume><issue>20</issue><spage>9402</spage><epage>9413</epage><pages>9402-9413</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Polymeric carbon nitride (PCN) and PCN-ZnO nanocomposites are promising candidates for catalysis, particularly for hydrogen evolution reactions (HER). However, their catalytic efficiency requires enhancement to fully realize their potential. This study aims to improve the HER performance of PCN by synthesizing PCN-ZnO nanocomposites using melamine as a precursor. Two synthesis methods were employed: thermal condensation (Method 1) and liquid exfoliation (Method 2). Method 1 resulted in a composite with a 2.44 eV energy gap and reduced particle size, with significantly enhanced performance as a bifunctional electrocatalyst for simultaneous hydrogen and oxygen production. In contrast, Method 2 produced a nanocomposite with an enhanced surface area and a minor alteration in the band gap. In alkaline electrolytes, the PCN-ZnO0.4 nanocomposite synthesized with Method 1 exhibited high HER performance with an overpotential of 281 mV, outperforming pristine PCN (382 mV) and ZnO (302 mV), along with improved oxygen evolution reaction (OER) activity. Further analysis in a two-electrode alkaline electrolyzer using PCN-ZnO0.4 nanocomposite as both the anode and cathode demonstrated its promise as a bifunctional electrocatalyst. Density functional theory (DFT) calculations explained the enhanced catalytic activity of the PCN-ZnO nanocomposite, confirming that hydrogen evolution occurs through the Heyrovsky process, consistent with experimental results. Notably, the solar-to-hydrogen (STH) efficiency of the PCN-ZnO nanocomposite was four times greater, at 21.7% compared to 5.2% for the PCN monolayer, underscoring its potential for efficient solar-driven hydrogen production. This work paves the way for future advancements in the design of high-performance electrocatalysts for sustainable energy applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39484080</pmid><doi>10.1021/acsaem.4c01932</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8521-0688</orcidid><orcidid>https://orcid.org/0000-0002-1460-7861</orcidid><orcidid>https://orcid.org/0000-0001-6035-9312</orcidid><orcidid>https://orcid.org/0000-0002-8783-4846</orcidid><orcidid>https://orcid.org/0000-0002-5858-5895</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2024-10, Vol.7 (20), p.9402-9413
issn 2574-0962
2574-0962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11523037
source American Chemical Society (ACS) Journals
title Cutting-Edge PCN-ZnO Nanocomposites with Experimental and DFT Insights into Enhanced Hydrogen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cutting-Edge%20PCN-ZnO%20Nanocomposites%20with%20Experimental%20and%20DFT%20Insights%20into%20Enhanced%20Hydrogen%20Evolution%20Reaction&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Som,%20Narayan%20N.&rft.date=2024-10-28&rft.volume=7&rft.issue=20&rft.spage=9402&rft.epage=9413&rft.pages=9402-9413&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.4c01932&rft_dat=%3Cproquest_pubme%3E3123075763%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123075763&rft_id=info:pmid/39484080&rfr_iscdi=true