Probing Bioinorganic Electron Spin Decoherence Mechanisms with an Fe2S2 Metalloprotein
Recent efforts have sought to develop paramagnetic molecular quantum bits (qubits) as a means to store and manipulate quantum information. Emerging structure–property relationships have shed light on electron spin decoherence mechanisms. While insights within molecular quantum information science ha...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2024-10, Vol.128 (42), p.10417-10426 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10426 |
---|---|
container_issue | 42 |
container_start_page | 10417 |
container_title | The journal of physical chemistry. B |
container_volume | 128 |
creator | Totoiu, Christian A. Follmer, Alec H. Oyala, Paul H. Hadt, Ryan G. |
description | Recent efforts have sought to develop paramagnetic molecular quantum bits (qubits) as a means to store and manipulate quantum information. Emerging structure–property relationships have shed light on electron spin decoherence mechanisms. While insights within molecular quantum information science have derived from synthetic systems, biomolecular platforms would allow for the study of decoherence phenomena in more complex chemical environments and further leverage molecular biology and protein engineering approaches. Here we have employed the exchange-coupled S T = 1/2 Fe2S2 active site of putidaredoxin, an electron transfer metalloprotein, as a platform for fundamental mechanistic studies of electron spin decoherence toward spin-based biological quantum sensing. At low temperatures, decoherence rates were anisotropic, reflecting a hyperfine-dominated decoherence mechanism, standing in contrast to the anisotropy of molecular systems observed previously. This mechanism provided a pathway for probing spatial effects on decoherence, such as protein vs solvent contributions. Furthermore, we demonstrated spatial sensitivity to single point mutations via site-directed mutagenesis and temporal sensitivity for monitoring solvent isotope exchange. Thus, this study demonstrates a step toward the design and construction of biomolecular quantum sensors. |
doi_str_mv | 10.1021/acs.jpcb.4c06186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11514009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115770644</sourcerecordid><originalsourceid>FETCH-LOGICAL-a253t-c59287680900b2dc2fd22ee17ba1998497b982d079e77edb6104055a467d10223</originalsourceid><addsrcrecordid>eNpVUbFOwzAUtBCIlsLOmJGBFttJ7HhCUFpAKgKpwGo5zmvjKrGDnYL4ewztwvD0nt6dTro7hM4JnhBMyZXSYbLpdDnJNGakYAdoSHKKx3H44f5mBLMBOglhgzHNacGO0SAVqaCCsCF6f_GuNHad3BpnrPNrZY1OZg3o3jubLDtjkzvQrgYPVkPyBLqOlNCG5Mv0daJsMge6pBHoVdO4zrsejD1FRyvVBDjb7xF6m89epw_jxfP94_RmMVY0T_uxzgUtOCuwwLiklaarilIAwktFhCgywUtR0ApzAZxDVUYvGc5zlTFexQBoOkLXO91uW7ZQabC9V43svGmV_5ZOGfkfsaaWa_cpCclJhrGIChd7Be8-thB62ZqgoWmUBbcNMo1MzjHLski93FFj7HLjtt5Ga5Jg-duF_HvGLuS-i_QHN8d81w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115770644</pqid></control><display><type>article</type><title>Probing Bioinorganic Electron Spin Decoherence Mechanisms with an Fe2S2 Metalloprotein</title><source>American Chemical Society Journals</source><creator>Totoiu, Christian A. ; Follmer, Alec H. ; Oyala, Paul H. ; Hadt, Ryan G.</creator><creatorcontrib>Totoiu, Christian A. ; Follmer, Alec H. ; Oyala, Paul H. ; Hadt, Ryan G.</creatorcontrib><description>Recent efforts have sought to develop paramagnetic molecular quantum bits (qubits) as a means to store and manipulate quantum information. Emerging structure–property relationships have shed light on electron spin decoherence mechanisms. While insights within molecular quantum information science have derived from synthetic systems, biomolecular platforms would allow for the study of decoherence phenomena in more complex chemical environments and further leverage molecular biology and protein engineering approaches. Here we have employed the exchange-coupled S T = 1/2 Fe2S2 active site of putidaredoxin, an electron transfer metalloprotein, as a platform for fundamental mechanistic studies of electron spin decoherence toward spin-based biological quantum sensing. At low temperatures, decoherence rates were anisotropic, reflecting a hyperfine-dominated decoherence mechanism, standing in contrast to the anisotropy of molecular systems observed previously. This mechanism provided a pathway for probing spatial effects on decoherence, such as protein vs solvent contributions. Furthermore, we demonstrated spatial sensitivity to single point mutations via site-directed mutagenesis and temporal sensitivity for monitoring solvent isotope exchange. Thus, this study demonstrates a step toward the design and construction of biomolecular quantum sensors.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.4c06186</identifier><identifier>PMID: 39392916</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>B: Biophysical and Biochemical Systems and Processes</subject><ispartof>The journal of physical chemistry. B, 2024-10, Vol.128 (42), p.10417-10426</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8761-4667 ; 0000-0002-6244-6804 ; 0009-0004-5437-4339 ; 0000-0001-6026-1358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.4c06186$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.4c06186$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Totoiu, Christian A.</creatorcontrib><creatorcontrib>Follmer, Alec H.</creatorcontrib><creatorcontrib>Oyala, Paul H.</creatorcontrib><creatorcontrib>Hadt, Ryan G.</creatorcontrib><title>Probing Bioinorganic Electron Spin Decoherence Mechanisms with an Fe2S2 Metalloprotein</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Recent efforts have sought to develop paramagnetic molecular quantum bits (qubits) as a means to store and manipulate quantum information. Emerging structure–property relationships have shed light on electron spin decoherence mechanisms. While insights within molecular quantum information science have derived from synthetic systems, biomolecular platforms would allow for the study of decoherence phenomena in more complex chemical environments and further leverage molecular biology and protein engineering approaches. Here we have employed the exchange-coupled S T = 1/2 Fe2S2 active site of putidaredoxin, an electron transfer metalloprotein, as a platform for fundamental mechanistic studies of electron spin decoherence toward spin-based biological quantum sensing. At low temperatures, decoherence rates were anisotropic, reflecting a hyperfine-dominated decoherence mechanism, standing in contrast to the anisotropy of molecular systems observed previously. This mechanism provided a pathway for probing spatial effects on decoherence, such as protein vs solvent contributions. Furthermore, we demonstrated spatial sensitivity to single point mutations via site-directed mutagenesis and temporal sensitivity for monitoring solvent isotope exchange. Thus, this study demonstrates a step toward the design and construction of biomolecular quantum sensors.</description><subject>B: Biophysical and Biochemical Systems and Processes</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUbFOwzAUtBCIlsLOmJGBFttJ7HhCUFpAKgKpwGo5zmvjKrGDnYL4ewztwvD0nt6dTro7hM4JnhBMyZXSYbLpdDnJNGakYAdoSHKKx3H44f5mBLMBOglhgzHNacGO0SAVqaCCsCF6f_GuNHad3BpnrPNrZY1OZg3o3jubLDtjkzvQrgYPVkPyBLqOlNCG5Mv0daJsMge6pBHoVdO4zrsejD1FRyvVBDjb7xF6m89epw_jxfP94_RmMVY0T_uxzgUtOCuwwLiklaarilIAwktFhCgywUtR0ApzAZxDVUYvGc5zlTFexQBoOkLXO91uW7ZQabC9V43svGmV_5ZOGfkfsaaWa_cpCclJhrGIChd7Be8-thB62ZqgoWmUBbcNMo1MzjHLski93FFj7HLjtt5Ga5Jg-duF_HvGLuS-i_QHN8d81w</recordid><startdate>20241024</startdate><enddate>20241024</enddate><creator>Totoiu, Christian A.</creator><creator>Follmer, Alec H.</creator><creator>Oyala, Paul H.</creator><creator>Hadt, Ryan G.</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8761-4667</orcidid><orcidid>https://orcid.org/0000-0002-6244-6804</orcidid><orcidid>https://orcid.org/0009-0004-5437-4339</orcidid><orcidid>https://orcid.org/0000-0001-6026-1358</orcidid></search><sort><creationdate>20241024</creationdate><title>Probing Bioinorganic Electron Spin Decoherence Mechanisms with an Fe2S2 Metalloprotein</title><author>Totoiu, Christian A. ; Follmer, Alec H. ; Oyala, Paul H. ; Hadt, Ryan G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a253t-c59287680900b2dc2fd22ee17ba1998497b982d079e77edb6104055a467d10223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>B: Biophysical and Biochemical Systems and Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Totoiu, Christian A.</creatorcontrib><creatorcontrib>Follmer, Alec H.</creatorcontrib><creatorcontrib>Oyala, Paul H.</creatorcontrib><creatorcontrib>Hadt, Ryan G.</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Totoiu, Christian A.</au><au>Follmer, Alec H.</au><au>Oyala, Paul H.</au><au>Hadt, Ryan G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Bioinorganic Electron Spin Decoherence Mechanisms with an Fe2S2 Metalloprotein</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2024-10-24</date><risdate>2024</risdate><volume>128</volume><issue>42</issue><spage>10417</spage><epage>10426</epage><pages>10417-10426</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>Recent efforts have sought to develop paramagnetic molecular quantum bits (qubits) as a means to store and manipulate quantum information. Emerging structure–property relationships have shed light on electron spin decoherence mechanisms. While insights within molecular quantum information science have derived from synthetic systems, biomolecular platforms would allow for the study of decoherence phenomena in more complex chemical environments and further leverage molecular biology and protein engineering approaches. Here we have employed the exchange-coupled S T = 1/2 Fe2S2 active site of putidaredoxin, an electron transfer metalloprotein, as a platform for fundamental mechanistic studies of electron spin decoherence toward spin-based biological quantum sensing. At low temperatures, decoherence rates were anisotropic, reflecting a hyperfine-dominated decoherence mechanism, standing in contrast to the anisotropy of molecular systems observed previously. This mechanism provided a pathway for probing spatial effects on decoherence, such as protein vs solvent contributions. Furthermore, we demonstrated spatial sensitivity to single point mutations via site-directed mutagenesis and temporal sensitivity for monitoring solvent isotope exchange. Thus, this study demonstrates a step toward the design and construction of biomolecular quantum sensors.</abstract><pub>American Chemical Society</pub><pmid>39392916</pmid><doi>10.1021/acs.jpcb.4c06186</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8761-4667</orcidid><orcidid>https://orcid.org/0000-0002-6244-6804</orcidid><orcidid>https://orcid.org/0009-0004-5437-4339</orcidid><orcidid>https://orcid.org/0000-0001-6026-1358</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2024-10, Vol.128 (42), p.10417-10426 |
issn | 1520-6106 1520-5207 1520-5207 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11514009 |
source | American Chemical Society Journals |
subjects | B: Biophysical and Biochemical Systems and Processes |
title | Probing Bioinorganic Electron Spin Decoherence Mechanisms with an Fe2S2 Metalloprotein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Bioinorganic%20Electron%20Spin%20Decoherence%20Mechanisms%20with%20an%20Fe2S2%20Metalloprotein&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Totoiu,%20Christian%20A.&rft.date=2024-10-24&rft.volume=128&rft.issue=42&rft.spage=10417&rft.epage=10426&rft.pages=10417-10426&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.4c06186&rft_dat=%3Cproquest_pubme%3E3115770644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115770644&rft_id=info:pmid/39392916&rfr_iscdi=true |