A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes
Abstract Motivation Recent advances in spatial transcriptomics technologies have provided multi-modality data integrating gene expression, spatial context, and histological images. Accurately identifying spatial domains and spatially variable genes is crucial for understanding tissue structures and...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2024-10, Vol.40 (10) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Bioinformatics (Oxford, England) |
container_volume | 40 |
creator | Liang, Xiao Liu, Pei Xue, Li Chen, Baiyun Liu, Wei Shi, Wanwan Wang, Yongwang Chen, Xiangtao Luo, Jiawei |
description | Abstract
Motivation
Recent advances in spatial transcriptomics technologies have provided multi-modality data integrating gene expression, spatial context, and histological images. Accurately identifying spatial domains and spatially variable genes is crucial for understanding tissue structures and biological functions. However, effectively combining multi-modality data to identify spatial domains and determining SVGs closely related to these spatial domains remains a challenge.
Results
In this study, we propose spatial transcriptomics multi-modality and multi-granularity collaborative learning (spaMMCL). For detecting spatial domains, spaMMCL mitigates the adverse effects of modality bias by masking portions of gene expression data, integrates gene and image features using a shared graph convolutional network, and employs graph self-supervised learning to deal with noise from feature fusion. Simultaneously, based on the identified spatial domains, spaMMCL integrates various strategies to detect potential SVGs at different granularities, enhancing their reliability and biological significance. Experimental results demonstrate that spaMMCL substantially improves the identification of spatial domains and SVGs.
Availability and implementation
The code and data of spaMMCL are available on Github: Https://github.com/liangxiao-cs/spaMMCL. |
doi_str_mv | 10.1093/bioinformatics/btae607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11513014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btae607</oup_id><sourcerecordid>3117992862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-3178ed6401a3e67f6331210ba8305a489fb65a2751354935d37fd607ce197d693</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhq2KqlDav4As9cIlxRMndnJCCFGohNRLe7YmsbMYHHuxk0V754fX200R9NSTrZln3vl4CTkB9hVYy886G6wfQhxxsn066yY0gsl35Ai4kEXVABy8-h-SjyndM8ZqVosP5JC3FTQg5RF5vqDj7CZbjEGjs9OWotdLaBXRzw7jLtoH57ALMbfbGOoMRm_9ig4RR_MU4gPNs1CrjZ_ssN1l0jqj6KgOI1qf_sguMbelm6yKnTN0ZbxJn8j7AV0yn5f3mPz6dvXz8qa4_XH9_fLitui5KKeCg2yMFhUD5EbIQXAOJbAOG85qrJp26ESNpayB11XLa83loPNVegOt1KLlx-R8r7ueu9HoPk8b0al1tCPGrQpo1duMt3dqFTYKIGsyqLLC6aIQw-Ns0qRGm3qTb-NNmJPiALJty0aUGf3yD3of5ujzfpkqGwa8YjJTYk_1MaQUzfAyDTC1c1q9dVotTufCk9e7vJT9tTYDsAfCvP5f0d9TPr9a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128013407</pqid></control><display><type>article</type><title>A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Liang, Xiao ; Liu, Pei ; Xue, Li ; Chen, Baiyun ; Liu, Wei ; Shi, Wanwan ; Wang, Yongwang ; Chen, Xiangtao ; Luo, Jiawei</creator><contributor>Wren, Jonathan</contributor><creatorcontrib>Liang, Xiao ; Liu, Pei ; Xue, Li ; Chen, Baiyun ; Liu, Wei ; Shi, Wanwan ; Wang, Yongwang ; Chen, Xiangtao ; Luo, Jiawei ; Wren, Jonathan</creatorcontrib><description>Abstract
Motivation
Recent advances in spatial transcriptomics technologies have provided multi-modality data integrating gene expression, spatial context, and histological images. Accurately identifying spatial domains and spatially variable genes is crucial for understanding tissue structures and biological functions. However, effectively combining multi-modality data to identify spatial domains and determining SVGs closely related to these spatial domains remains a challenge.
Results
In this study, we propose spatial transcriptomics multi-modality and multi-granularity collaborative learning (spaMMCL). For detecting spatial domains, spaMMCL mitigates the adverse effects of modality bias by masking portions of gene expression data, integrates gene and image features using a shared graph convolutional network, and employs graph self-supervised learning to deal with noise from feature fusion. Simultaneously, based on the identified spatial domains, spaMMCL integrates various strategies to detect potential SVGs at different granularities, enhancing their reliability and biological significance. Experimental results demonstrate that spaMMCL substantially improves the identification of spatial domains and SVGs.
Availability and implementation
The code and data of spaMMCL are available on Github: Https://github.com/liangxiao-cs/spaMMCL.</description><identifier>ISSN: 1367-4811</identifier><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btae607</identifier><identifier>PMID: 39418177</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Artificial neural networks ; Availability ; Biological effects ; Collaborative learning ; Computational Biology - methods ; Gene expression ; Gene Expression Profiling - methods ; Gene fusion ; Genes ; Genetic diversity ; Humans ; Image enhancement ; Original Paper ; Self-supervised learning ; Software ; Spatial data ; Spatial discrimination learning ; Transcriptome - genetics ; Transcriptomics</subject><ispartof>Bioinformatics (Oxford, England), 2024-10, Vol.40 (10)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-3178ed6401a3e67f6331210ba8305a489fb65a2751354935d37fd607ce197d693</cites><orcidid>0009-0007-3235-4179 ; 0000-0002-2828-8179 ; 0000-0003-4730-4610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513014/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513014/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39418177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wren, Jonathan</contributor><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Liu, Pei</creatorcontrib><creatorcontrib>Xue, Li</creatorcontrib><creatorcontrib>Chen, Baiyun</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Shi, Wanwan</creatorcontrib><creatorcontrib>Wang, Yongwang</creatorcontrib><creatorcontrib>Chen, Xiangtao</creatorcontrib><creatorcontrib>Luo, Jiawei</creatorcontrib><title>A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Recent advances in spatial transcriptomics technologies have provided multi-modality data integrating gene expression, spatial context, and histological images. Accurately identifying spatial domains and spatially variable genes is crucial for understanding tissue structures and biological functions. However, effectively combining multi-modality data to identify spatial domains and determining SVGs closely related to these spatial domains remains a challenge.
Results
In this study, we propose spatial transcriptomics multi-modality and multi-granularity collaborative learning (spaMMCL). For detecting spatial domains, spaMMCL mitigates the adverse effects of modality bias by masking portions of gene expression data, integrates gene and image features using a shared graph convolutional network, and employs graph self-supervised learning to deal with noise from feature fusion. Simultaneously, based on the identified spatial domains, spaMMCL integrates various strategies to detect potential SVGs at different granularities, enhancing their reliability and biological significance. Experimental results demonstrate that spaMMCL substantially improves the identification of spatial domains and SVGs.
Availability and implementation
The code and data of spaMMCL are available on Github: Https://github.com/liangxiao-cs/spaMMCL.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Availability</subject><subject>Biological effects</subject><subject>Collaborative learning</subject><subject>Computational Biology - methods</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene fusion</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Humans</subject><subject>Image enhancement</subject><subject>Original Paper</subject><subject>Self-supervised learning</subject><subject>Software</subject><subject>Spatial data</subject><subject>Spatial discrimination learning</subject><subject>Transcriptome - genetics</subject><subject>Transcriptomics</subject><issn>1367-4811</issn><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1P3DAQhq2KqlDav4As9cIlxRMndnJCCFGohNRLe7YmsbMYHHuxk0V754fX200R9NSTrZln3vl4CTkB9hVYy886G6wfQhxxsn066yY0gsl35Ai4kEXVABy8-h-SjyndM8ZqVosP5JC3FTQg5RF5vqDj7CZbjEGjs9OWotdLaBXRzw7jLtoH57ALMbfbGOoMRm_9ig4RR_MU4gPNs1CrjZ_ssN1l0jqj6KgOI1qf_sguMbelm6yKnTN0ZbxJn8j7AV0yn5f3mPz6dvXz8qa4_XH9_fLitui5KKeCg2yMFhUD5EbIQXAOJbAOG85qrJp26ESNpayB11XLa83loPNVegOt1KLlx-R8r7ueu9HoPk8b0al1tCPGrQpo1duMt3dqFTYKIGsyqLLC6aIQw-Ns0qRGm3qTb-NNmJPiALJty0aUGf3yD3of5ujzfpkqGwa8YjJTYk_1MaQUzfAyDTC1c1q9dVotTufCk9e7vJT9tTYDsAfCvP5f0d9TPr9a</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Liang, Xiao</creator><creator>Liu, Pei</creator><creator>Xue, Li</creator><creator>Chen, Baiyun</creator><creator>Liu, Wei</creator><creator>Shi, Wanwan</creator><creator>Wang, Yongwang</creator><creator>Chen, Xiangtao</creator><creator>Luo, Jiawei</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0007-3235-4179</orcidid><orcidid>https://orcid.org/0000-0002-2828-8179</orcidid><orcidid>https://orcid.org/0000-0003-4730-4610</orcidid></search><sort><creationdate>20241001</creationdate><title>A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes</title><author>Liang, Xiao ; Liu, Pei ; Xue, Li ; Chen, Baiyun ; Liu, Wei ; Shi, Wanwan ; Wang, Yongwang ; Chen, Xiangtao ; Luo, Jiawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-3178ed6401a3e67f6331210ba8305a489fb65a2751354935d37fd607ce197d693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Availability</topic><topic>Biological effects</topic><topic>Collaborative learning</topic><topic>Computational Biology - methods</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene fusion</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Humans</topic><topic>Image enhancement</topic><topic>Original Paper</topic><topic>Self-supervised learning</topic><topic>Software</topic><topic>Spatial data</topic><topic>Spatial discrimination learning</topic><topic>Transcriptome - genetics</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Liu, Pei</creatorcontrib><creatorcontrib>Xue, Li</creatorcontrib><creatorcontrib>Chen, Baiyun</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Shi, Wanwan</creatorcontrib><creatorcontrib>Wang, Yongwang</creatorcontrib><creatorcontrib>Chen, Xiangtao</creatorcontrib><creatorcontrib>Luo, Jiawei</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiao</au><au>Liu, Pei</au><au>Xue, Li</au><au>Chen, Baiyun</au><au>Liu, Wei</au><au>Shi, Wanwan</au><au>Wang, Yongwang</au><au>Chen, Xiangtao</au><au>Luo, Jiawei</au><au>Wren, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>40</volume><issue>10</issue><issn>1367-4811</issn><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Recent advances in spatial transcriptomics technologies have provided multi-modality data integrating gene expression, spatial context, and histological images. Accurately identifying spatial domains and spatially variable genes is crucial for understanding tissue structures and biological functions. However, effectively combining multi-modality data to identify spatial domains and determining SVGs closely related to these spatial domains remains a challenge.
Results
In this study, we propose spatial transcriptomics multi-modality and multi-granularity collaborative learning (spaMMCL). For detecting spatial domains, spaMMCL mitigates the adverse effects of modality bias by masking portions of gene expression data, integrates gene and image features using a shared graph convolutional network, and employs graph self-supervised learning to deal with noise from feature fusion. Simultaneously, based on the identified spatial domains, spaMMCL integrates various strategies to detect potential SVGs at different granularities, enhancing their reliability and biological significance. Experimental results demonstrate that spaMMCL substantially improves the identification of spatial domains and SVGs.
Availability and implementation
The code and data of spaMMCL are available on Github: Https://github.com/liangxiao-cs/spaMMCL.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39418177</pmid><doi>10.1093/bioinformatics/btae607</doi><orcidid>https://orcid.org/0009-0007-3235-4179</orcidid><orcidid>https://orcid.org/0000-0002-2828-8179</orcidid><orcidid>https://orcid.org/0000-0003-4730-4610</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4811 |
ispartof | Bioinformatics (Oxford, England), 2024-10, Vol.40 (10) |
issn | 1367-4811 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11513014 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Artificial neural networks Availability Biological effects Collaborative learning Computational Biology - methods Gene expression Gene Expression Profiling - methods Gene fusion Genes Genetic diversity Humans Image enhancement Original Paper Self-supervised learning Software Spatial data Spatial discrimination learning Transcriptome - genetics Transcriptomics |
title | A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-modality%20and%20multi-granularity%20collaborative%20learning%20framework%20for%20identifying%20spatial%20domains%20and%20spatially%20variable%20genes&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Liang,%20Xiao&rft.date=2024-10-01&rft.volume=40&rft.issue=10&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btae607&rft_dat=%3Cproquest_pubme%3E3117992862%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128013407&rft_id=info:pmid/39418177&rft_oup_id=10.1093/bioinformatics/btae607&rfr_iscdi=true |