A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes

Abstract Motivation Recent advances in spatial transcriptomics technologies have provided multi-modality data integrating gene expression, spatial context, and histological images. Accurately identifying spatial domains and spatially variable genes is crucial for understanding tissue structures and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2024-10, Vol.40 (10)
Hauptverfasser: Liang, Xiao, Liu, Pei, Xue, Li, Chen, Baiyun, Liu, Wei, Shi, Wanwan, Wang, Yongwang, Chen, Xiangtao, Luo, Jiawei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Bioinformatics (Oxford, England)
container_volume 40
creator Liang, Xiao
Liu, Pei
Xue, Li
Chen, Baiyun
Liu, Wei
Shi, Wanwan
Wang, Yongwang
Chen, Xiangtao
Luo, Jiawei
description Abstract Motivation Recent advances in spatial transcriptomics technologies have provided multi-modality data integrating gene expression, spatial context, and histological images. Accurately identifying spatial domains and spatially variable genes is crucial for understanding tissue structures and biological functions. However, effectively combining multi-modality data to identify spatial domains and determining SVGs closely related to these spatial domains remains a challenge. Results In this study, we propose spatial transcriptomics multi-modality and multi-granularity collaborative learning (spaMMCL). For detecting spatial domains, spaMMCL mitigates the adverse effects of modality bias by masking portions of gene expression data, integrates gene and image features using a shared graph convolutional network, and employs graph self-supervised learning to deal with noise from feature fusion. Simultaneously, based on the identified spatial domains, spaMMCL integrates various strategies to detect potential SVGs at different granularities, enhancing their reliability and biological significance. Experimental results demonstrate that spaMMCL substantially improves the identification of spatial domains and SVGs. Availability and implementation The code and data of spaMMCL are available on Github: Https://github.com/liangxiao-cs/spaMMCL.
doi_str_mv 10.1093/bioinformatics/btae607
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11513014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btae607</oup_id><sourcerecordid>3117992862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-3178ed6401a3e67f6331210ba8305a489fb65a2751354935d37fd607ce197d693</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhq2KqlDav4As9cIlxRMndnJCCFGohNRLe7YmsbMYHHuxk0V754fX200R9NSTrZln3vl4CTkB9hVYy886G6wfQhxxsn066yY0gsl35Ai4kEXVABy8-h-SjyndM8ZqVosP5JC3FTQg5RF5vqDj7CZbjEGjs9OWotdLaBXRzw7jLtoH57ALMbfbGOoMRm_9ig4RR_MU4gPNs1CrjZ_ssN1l0jqj6KgOI1qf_sguMbelm6yKnTN0ZbxJn8j7AV0yn5f3mPz6dvXz8qa4_XH9_fLitui5KKeCg2yMFhUD5EbIQXAOJbAOG85qrJp26ESNpayB11XLa83loPNVegOt1KLlx-R8r7ueu9HoPk8b0al1tCPGrQpo1duMt3dqFTYKIGsyqLLC6aIQw-Ns0qRGm3qTb-NNmJPiALJty0aUGf3yD3of5ujzfpkqGwa8YjJTYk_1MaQUzfAyDTC1c1q9dVotTufCk9e7vJT9tTYDsAfCvP5f0d9TPr9a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128013407</pqid></control><display><type>article</type><title>A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Liang, Xiao ; Liu, Pei ; Xue, Li ; Chen, Baiyun ; Liu, Wei ; Shi, Wanwan ; Wang, Yongwang ; Chen, Xiangtao ; Luo, Jiawei</creator><contributor>Wren, Jonathan</contributor><creatorcontrib>Liang, Xiao ; Liu, Pei ; Xue, Li ; Chen, Baiyun ; Liu, Wei ; Shi, Wanwan ; Wang, Yongwang ; Chen, Xiangtao ; Luo, Jiawei ; Wren, Jonathan</creatorcontrib><description>Abstract Motivation Recent advances in spatial transcriptomics technologies have provided multi-modality data integrating gene expression, spatial context, and histological images. Accurately identifying spatial domains and spatially variable genes is crucial for understanding tissue structures and biological functions. However, effectively combining multi-modality data to identify spatial domains and determining SVGs closely related to these spatial domains remains a challenge. Results In this study, we propose spatial transcriptomics multi-modality and multi-granularity collaborative learning (spaMMCL). For detecting spatial domains, spaMMCL mitigates the adverse effects of modality bias by masking portions of gene expression data, integrates gene and image features using a shared graph convolutional network, and employs graph self-supervised learning to deal with noise from feature fusion. Simultaneously, based on the identified spatial domains, spaMMCL integrates various strategies to detect potential SVGs at different granularities, enhancing their reliability and biological significance. Experimental results demonstrate that spaMMCL substantially improves the identification of spatial domains and SVGs. Availability and implementation The code and data of spaMMCL are available on Github: Https://github.com/liangxiao-cs/spaMMCL.</description><identifier>ISSN: 1367-4811</identifier><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btae607</identifier><identifier>PMID: 39418177</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Artificial neural networks ; Availability ; Biological effects ; Collaborative learning ; Computational Biology - methods ; Gene expression ; Gene Expression Profiling - methods ; Gene fusion ; Genes ; Genetic diversity ; Humans ; Image enhancement ; Original Paper ; Self-supervised learning ; Software ; Spatial data ; Spatial discrimination learning ; Transcriptome - genetics ; Transcriptomics</subject><ispartof>Bioinformatics (Oxford, England), 2024-10, Vol.40 (10)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-3178ed6401a3e67f6331210ba8305a489fb65a2751354935d37fd607ce197d693</cites><orcidid>0009-0007-3235-4179 ; 0000-0002-2828-8179 ; 0000-0003-4730-4610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513014/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513014/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39418177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wren, Jonathan</contributor><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Liu, Pei</creatorcontrib><creatorcontrib>Xue, Li</creatorcontrib><creatorcontrib>Chen, Baiyun</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Shi, Wanwan</creatorcontrib><creatorcontrib>Wang, Yongwang</creatorcontrib><creatorcontrib>Chen, Xiangtao</creatorcontrib><creatorcontrib>Luo, Jiawei</creatorcontrib><title>A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Recent advances in spatial transcriptomics technologies have provided multi-modality data integrating gene expression, spatial context, and histological images. Accurately identifying spatial domains and spatially variable genes is crucial for understanding tissue structures and biological functions. However, effectively combining multi-modality data to identify spatial domains and determining SVGs closely related to these spatial domains remains a challenge. Results In this study, we propose spatial transcriptomics multi-modality and multi-granularity collaborative learning (spaMMCL). For detecting spatial domains, spaMMCL mitigates the adverse effects of modality bias by masking portions of gene expression data, integrates gene and image features using a shared graph convolutional network, and employs graph self-supervised learning to deal with noise from feature fusion. Simultaneously, based on the identified spatial domains, spaMMCL integrates various strategies to detect potential SVGs at different granularities, enhancing their reliability and biological significance. Experimental results demonstrate that spaMMCL substantially improves the identification of spatial domains and SVGs. Availability and implementation The code and data of spaMMCL are available on Github: Https://github.com/liangxiao-cs/spaMMCL.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Availability</subject><subject>Biological effects</subject><subject>Collaborative learning</subject><subject>Computational Biology - methods</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene fusion</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Humans</subject><subject>Image enhancement</subject><subject>Original Paper</subject><subject>Self-supervised learning</subject><subject>Software</subject><subject>Spatial data</subject><subject>Spatial discrimination learning</subject><subject>Transcriptome - genetics</subject><subject>Transcriptomics</subject><issn>1367-4811</issn><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1P3DAQhq2KqlDav4As9cIlxRMndnJCCFGohNRLe7YmsbMYHHuxk0V754fX200R9NSTrZln3vl4CTkB9hVYy886G6wfQhxxsn066yY0gsl35Ai4kEXVABy8-h-SjyndM8ZqVosP5JC3FTQg5RF5vqDj7CZbjEGjs9OWotdLaBXRzw7jLtoH57ALMbfbGOoMRm_9ig4RR_MU4gPNs1CrjZ_ssN1l0jqj6KgOI1qf_sguMbelm6yKnTN0ZbxJn8j7AV0yn5f3mPz6dvXz8qa4_XH9_fLitui5KKeCg2yMFhUD5EbIQXAOJbAOG85qrJp26ESNpayB11XLa83loPNVegOt1KLlx-R8r7ueu9HoPk8b0al1tCPGrQpo1duMt3dqFTYKIGsyqLLC6aIQw-Ns0qRGm3qTb-NNmJPiALJty0aUGf3yD3of5ujzfpkqGwa8YjJTYk_1MaQUzfAyDTC1c1q9dVotTufCk9e7vJT9tTYDsAfCvP5f0d9TPr9a</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Liang, Xiao</creator><creator>Liu, Pei</creator><creator>Xue, Li</creator><creator>Chen, Baiyun</creator><creator>Liu, Wei</creator><creator>Shi, Wanwan</creator><creator>Wang, Yongwang</creator><creator>Chen, Xiangtao</creator><creator>Luo, Jiawei</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0007-3235-4179</orcidid><orcidid>https://orcid.org/0000-0002-2828-8179</orcidid><orcidid>https://orcid.org/0000-0003-4730-4610</orcidid></search><sort><creationdate>20241001</creationdate><title>A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes</title><author>Liang, Xiao ; Liu, Pei ; Xue, Li ; Chen, Baiyun ; Liu, Wei ; Shi, Wanwan ; Wang, Yongwang ; Chen, Xiangtao ; Luo, Jiawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-3178ed6401a3e67f6331210ba8305a489fb65a2751354935d37fd607ce197d693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Availability</topic><topic>Biological effects</topic><topic>Collaborative learning</topic><topic>Computational Biology - methods</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene fusion</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Humans</topic><topic>Image enhancement</topic><topic>Original Paper</topic><topic>Self-supervised learning</topic><topic>Software</topic><topic>Spatial data</topic><topic>Spatial discrimination learning</topic><topic>Transcriptome - genetics</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Liu, Pei</creatorcontrib><creatorcontrib>Xue, Li</creatorcontrib><creatorcontrib>Chen, Baiyun</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Shi, Wanwan</creatorcontrib><creatorcontrib>Wang, Yongwang</creatorcontrib><creatorcontrib>Chen, Xiangtao</creatorcontrib><creatorcontrib>Luo, Jiawei</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiao</au><au>Liu, Pei</au><au>Xue, Li</au><au>Chen, Baiyun</au><au>Liu, Wei</au><au>Shi, Wanwan</au><au>Wang, Yongwang</au><au>Chen, Xiangtao</au><au>Luo, Jiawei</au><au>Wren, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>40</volume><issue>10</issue><issn>1367-4811</issn><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation Recent advances in spatial transcriptomics technologies have provided multi-modality data integrating gene expression, spatial context, and histological images. Accurately identifying spatial domains and spatially variable genes is crucial for understanding tissue structures and biological functions. However, effectively combining multi-modality data to identify spatial domains and determining SVGs closely related to these spatial domains remains a challenge. Results In this study, we propose spatial transcriptomics multi-modality and multi-granularity collaborative learning (spaMMCL). For detecting spatial domains, spaMMCL mitigates the adverse effects of modality bias by masking portions of gene expression data, integrates gene and image features using a shared graph convolutional network, and employs graph self-supervised learning to deal with noise from feature fusion. Simultaneously, based on the identified spatial domains, spaMMCL integrates various strategies to detect potential SVGs at different granularities, enhancing their reliability and biological significance. Experimental results demonstrate that spaMMCL substantially improves the identification of spatial domains and SVGs. Availability and implementation The code and data of spaMMCL are available on Github: Https://github.com/liangxiao-cs/spaMMCL.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39418177</pmid><doi>10.1093/bioinformatics/btae607</doi><orcidid>https://orcid.org/0009-0007-3235-4179</orcidid><orcidid>https://orcid.org/0000-0002-2828-8179</orcidid><orcidid>https://orcid.org/0000-0003-4730-4610</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4811
ispartof Bioinformatics (Oxford, England), 2024-10, Vol.40 (10)
issn 1367-4811
1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11513014
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Artificial neural networks
Availability
Biological effects
Collaborative learning
Computational Biology - methods
Gene expression
Gene Expression Profiling - methods
Gene fusion
Genes
Genetic diversity
Humans
Image enhancement
Original Paper
Self-supervised learning
Software
Spatial data
Spatial discrimination learning
Transcriptome - genetics
Transcriptomics
title A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-modality%20and%20multi-granularity%20collaborative%20learning%20framework%20for%20identifying%20spatial%20domains%20and%20spatially%20variable%20genes&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Liang,%20Xiao&rft.date=2024-10-01&rft.volume=40&rft.issue=10&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btae607&rft_dat=%3Cproquest_pubme%3E3117992862%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128013407&rft_id=info:pmid/39418177&rft_oup_id=10.1093/bioinformatics/btae607&rfr_iscdi=true