Structure Design on Thermoplastic Composites Considering Forming Effects
Carbon fiber reinforced polypropylene (CF/PP) thermoplastics integrate the superior formability of fabrics with the recoverable characteristics of polypropylene, making them a pivotal solution for achieving lightweight designs in new energy vehicles. However, the prevailing methodologies for designi...
Gespeichert in:
Veröffentlicht in: | Polymers 2024-10, Vol.16 (20), p.2905 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 2905 |
container_title | Polymers |
container_volume | 16 |
creator | Xie, Wei Song, Kai Yang, Ju Wang, Fengyu Dong, Linjie Jin, Shengjie Zhu, Guohua Wang, Zhen |
description | Carbon fiber reinforced polypropylene (CF/PP) thermoplastics integrate the superior formability of fabrics with the recoverable characteristics of polypropylene, making them a pivotal solution for achieving lightweight designs in new energy vehicles. However, the prevailing methodologies for designing the structural performance of CF/PP vehicular components often omit the constraints imposed by the manufacturing process, thereby compromising product quality and reliability. This research presents a novel approach for developing a stamping-bending coupled finite element model (FEM) utilizing ABAQUS/Explicit. Initially, the hot stamping simulation is implemented, followed by the transmission of stamping information, including fiber yarn orientation and fiber yarn angle, to the follow-up step for updating the material properties of the cured specimen. Then, the structural performance analysis is conducted, accounting for the stamping effects. Furthermore, the parametric study reveals that the shape and length of the blank holding ring exerted minimal influence on the maximum fiber angle characteristic. However, it is noted that the energy absorption and crushing force efficiency metrics of the CF/PP specimens can be enhanced by increasing the length of the blank holding ring. Finally, a discrete optimization design is implemented to enhance the bending performance of the CF/PP specimen, accounting for the constraint of the maximum shear angle resulting from the stamping process. The optimized design resulted in a mass reduction of 14.3% and an improvement in specific energy absorption (
) by 17.5% compared to the baseline sample. |
doi_str_mv | 10.3390/polym16202905 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814408790</galeid><sourcerecordid>A814408790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-317331a9e80fa0c50807d4427c0ce7d6d8181ff8363f9a163423bab20c45062f3</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpaUKaY6_F0EsvTkceybJPJWzzBYEemp6FVh5tFGzJlexC_n21bBqSSocZpGfed4Zh7COHM8Qevs5xfJx420DTg3zDjhtQWAts4e2L_Iid5vwA5QjZtly9Z0fYC9kpxGN2_XNJq13WRNV3yn4Xqhiqu3tKU5xHkxdvq02c5pj9QrmkIfuBkg-76jKmaR8vnCO75A_snTNjptOneMJ-XV7cba7r2x9XN5vz29qi4EuNvNhy01MHzoCV0IEahGiUBUtqaIeOd9y5Dlt0veEtiga3ZtuAFRLaxuEJ-3bQndftRIOlsCQz6jn5yaRHHY3Xr3-Cv9e7-EdzLjlvuCwKX54UUvy9Ul705LOlcTSB4po1FgqKseQF_fwf-hDXFMp8ewqUEr3EQp0dqJ0ZSfvgYjG25Q40eRsDOV_ezzsuBHSqh1JQHwpsijkncs_tc9D7xepXiy38p5czP9P_1oh_AT92nis</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120774953</pqid></control><display><type>article</type><title>Structure Design on Thermoplastic Composites Considering Forming Effects</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Xie, Wei ; Song, Kai ; Yang, Ju ; Wang, Fengyu ; Dong, Linjie ; Jin, Shengjie ; Zhu, Guohua ; Wang, Zhen</creator><creatorcontrib>Xie, Wei ; Song, Kai ; Yang, Ju ; Wang, Fengyu ; Dong, Linjie ; Jin, Shengjie ; Zhu, Guohua ; Wang, Zhen</creatorcontrib><description>Carbon fiber reinforced polypropylene (CF/PP) thermoplastics integrate the superior formability of fabrics with the recoverable characteristics of polypropylene, making them a pivotal solution for achieving lightweight designs in new energy vehicles. However, the prevailing methodologies for designing the structural performance of CF/PP vehicular components often omit the constraints imposed by the manufacturing process, thereby compromising product quality and reliability. This research presents a novel approach for developing a stamping-bending coupled finite element model (FEM) utilizing ABAQUS/Explicit. Initially, the hot stamping simulation is implemented, followed by the transmission of stamping information, including fiber yarn orientation and fiber yarn angle, to the follow-up step for updating the material properties of the cured specimen. Then, the structural performance analysis is conducted, accounting for the stamping effects. Furthermore, the parametric study reveals that the shape and length of the blank holding ring exerted minimal influence on the maximum fiber angle characteristic. However, it is noted that the energy absorption and crushing force efficiency metrics of the CF/PP specimens can be enhanced by increasing the length of the blank holding ring. Finally, a discrete optimization design is implemented to enhance the bending performance of the CF/PP specimen, accounting for the constraint of the maximum shear angle resulting from the stamping process. The optimized design resulted in a mass reduction of 14.3% and an improvement in specific energy absorption (
) by 17.5% compared to the baseline sample.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16202905</identifier><identifier>PMID: 39458733</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Automobile industry ; Behavior ; Bending ; CAE ; Carbon fiber reinforced plastics ; Component reliability ; Composite materials ; Computer aided engineering ; Constraints ; Design optimization ; Energy absorption ; Fiber composites ; Fiber reinforced polymers ; Finite element analysis ; Finite element method ; Hot pressing ; Hot stamping ; Laminates ; Manufacturing ; Material properties ; Optimization ; Polypropylene ; Residual stress ; Shape effects ; Shear strain ; Specific energy ; Structural reliability ; Textile composites ; Thermoplastic composites ; Thermoplastic resins ; Yarn ; Yarns</subject><ispartof>Polymers, 2024-10, Vol.16 (20), p.2905</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-317331a9e80fa0c50807d4427c0ce7d6d8181ff8363f9a163423bab20c45062f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511215/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511215/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39458733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Song, Kai</creatorcontrib><creatorcontrib>Yang, Ju</creatorcontrib><creatorcontrib>Wang, Fengyu</creatorcontrib><creatorcontrib>Dong, Linjie</creatorcontrib><creatorcontrib>Jin, Shengjie</creatorcontrib><creatorcontrib>Zhu, Guohua</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><title>Structure Design on Thermoplastic Composites Considering Forming Effects</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Carbon fiber reinforced polypropylene (CF/PP) thermoplastics integrate the superior formability of fabrics with the recoverable characteristics of polypropylene, making them a pivotal solution for achieving lightweight designs in new energy vehicles. However, the prevailing methodologies for designing the structural performance of CF/PP vehicular components often omit the constraints imposed by the manufacturing process, thereby compromising product quality and reliability. This research presents a novel approach for developing a stamping-bending coupled finite element model (FEM) utilizing ABAQUS/Explicit. Initially, the hot stamping simulation is implemented, followed by the transmission of stamping information, including fiber yarn orientation and fiber yarn angle, to the follow-up step for updating the material properties of the cured specimen. Then, the structural performance analysis is conducted, accounting for the stamping effects. Furthermore, the parametric study reveals that the shape and length of the blank holding ring exerted minimal influence on the maximum fiber angle characteristic. However, it is noted that the energy absorption and crushing force efficiency metrics of the CF/PP specimens can be enhanced by increasing the length of the blank holding ring. Finally, a discrete optimization design is implemented to enhance the bending performance of the CF/PP specimen, accounting for the constraint of the maximum shear angle resulting from the stamping process. The optimized design resulted in a mass reduction of 14.3% and an improvement in specific energy absorption (
) by 17.5% compared to the baseline sample.</description><subject>Automobile industry</subject><subject>Behavior</subject><subject>Bending</subject><subject>CAE</subject><subject>Carbon fiber reinforced plastics</subject><subject>Component reliability</subject><subject>Composite materials</subject><subject>Computer aided engineering</subject><subject>Constraints</subject><subject>Design optimization</subject><subject>Energy absorption</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Hot pressing</subject><subject>Hot stamping</subject><subject>Laminates</subject><subject>Manufacturing</subject><subject>Material properties</subject><subject>Optimization</subject><subject>Polypropylene</subject><subject>Residual stress</subject><subject>Shape effects</subject><subject>Shear strain</subject><subject>Specific energy</subject><subject>Structural reliability</subject><subject>Textile composites</subject><subject>Thermoplastic composites</subject><subject>Thermoplastic resins</subject><subject>Yarn</subject><subject>Yarns</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1r3DAQhkVpaUKaY6_F0EsvTkceybJPJWzzBYEemp6FVh5tFGzJlexC_n21bBqSSocZpGfed4Zh7COHM8Qevs5xfJx420DTg3zDjhtQWAts4e2L_Iid5vwA5QjZtly9Z0fYC9kpxGN2_XNJq13WRNV3yn4Xqhiqu3tKU5xHkxdvq02c5pj9QrmkIfuBkg-76jKmaR8vnCO75A_snTNjptOneMJ-XV7cba7r2x9XN5vz29qi4EuNvNhy01MHzoCV0IEahGiUBUtqaIeOd9y5Dlt0veEtiga3ZtuAFRLaxuEJ-3bQndftRIOlsCQz6jn5yaRHHY3Xr3-Cv9e7-EdzLjlvuCwKX54UUvy9Ul705LOlcTSB4po1FgqKseQF_fwf-hDXFMp8ewqUEr3EQp0dqJ0ZSfvgYjG25Q40eRsDOV_ezzsuBHSqh1JQHwpsijkncs_tc9D7xepXiy38p5czP9P_1oh_AT92nis</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Xie, Wei</creator><creator>Song, Kai</creator><creator>Yang, Ju</creator><creator>Wang, Fengyu</creator><creator>Dong, Linjie</creator><creator>Jin, Shengjie</creator><creator>Zhu, Guohua</creator><creator>Wang, Zhen</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241015</creationdate><title>Structure Design on Thermoplastic Composites Considering Forming Effects</title><author>Xie, Wei ; Song, Kai ; Yang, Ju ; Wang, Fengyu ; Dong, Linjie ; Jin, Shengjie ; Zhu, Guohua ; Wang, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-317331a9e80fa0c50807d4427c0ce7d6d8181ff8363f9a163423bab20c45062f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automobile industry</topic><topic>Behavior</topic><topic>Bending</topic><topic>CAE</topic><topic>Carbon fiber reinforced plastics</topic><topic>Component reliability</topic><topic>Composite materials</topic><topic>Computer aided engineering</topic><topic>Constraints</topic><topic>Design optimization</topic><topic>Energy absorption</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Hot pressing</topic><topic>Hot stamping</topic><topic>Laminates</topic><topic>Manufacturing</topic><topic>Material properties</topic><topic>Optimization</topic><topic>Polypropylene</topic><topic>Residual stress</topic><topic>Shape effects</topic><topic>Shear strain</topic><topic>Specific energy</topic><topic>Structural reliability</topic><topic>Textile composites</topic><topic>Thermoplastic composites</topic><topic>Thermoplastic resins</topic><topic>Yarn</topic><topic>Yarns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Song, Kai</creatorcontrib><creatorcontrib>Yang, Ju</creatorcontrib><creatorcontrib>Wang, Fengyu</creatorcontrib><creatorcontrib>Dong, Linjie</creatorcontrib><creatorcontrib>Jin, Shengjie</creatorcontrib><creatorcontrib>Zhu, Guohua</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Wei</au><au>Song, Kai</au><au>Yang, Ju</au><au>Wang, Fengyu</au><au>Dong, Linjie</au><au>Jin, Shengjie</au><au>Zhu, Guohua</au><au>Wang, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure Design on Thermoplastic Composites Considering Forming Effects</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-10-15</date><risdate>2024</risdate><volume>16</volume><issue>20</issue><spage>2905</spage><pages>2905-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Carbon fiber reinforced polypropylene (CF/PP) thermoplastics integrate the superior formability of fabrics with the recoverable characteristics of polypropylene, making them a pivotal solution for achieving lightweight designs in new energy vehicles. However, the prevailing methodologies for designing the structural performance of CF/PP vehicular components often omit the constraints imposed by the manufacturing process, thereby compromising product quality and reliability. This research presents a novel approach for developing a stamping-bending coupled finite element model (FEM) utilizing ABAQUS/Explicit. Initially, the hot stamping simulation is implemented, followed by the transmission of stamping information, including fiber yarn orientation and fiber yarn angle, to the follow-up step for updating the material properties of the cured specimen. Then, the structural performance analysis is conducted, accounting for the stamping effects. Furthermore, the parametric study reveals that the shape and length of the blank holding ring exerted minimal influence on the maximum fiber angle characteristic. However, it is noted that the energy absorption and crushing force efficiency metrics of the CF/PP specimens can be enhanced by increasing the length of the blank holding ring. Finally, a discrete optimization design is implemented to enhance the bending performance of the CF/PP specimen, accounting for the constraint of the maximum shear angle resulting from the stamping process. The optimized design resulted in a mass reduction of 14.3% and an improvement in specific energy absorption (
) by 17.5% compared to the baseline sample.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39458733</pmid><doi>10.3390/polym16202905</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2024-10, Vol.16 (20), p.2905 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511215 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Automobile industry Behavior Bending CAE Carbon fiber reinforced plastics Component reliability Composite materials Computer aided engineering Constraints Design optimization Energy absorption Fiber composites Fiber reinforced polymers Finite element analysis Finite element method Hot pressing Hot stamping Laminates Manufacturing Material properties Optimization Polypropylene Residual stress Shape effects Shear strain Specific energy Structural reliability Textile composites Thermoplastic composites Thermoplastic resins Yarn Yarns |
title | Structure Design on Thermoplastic Composites Considering Forming Effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20Design%20on%20Thermoplastic%20Composites%20Considering%20Forming%20Effects&rft.jtitle=Polymers&rft.au=Xie,%20Wei&rft.date=2024-10-15&rft.volume=16&rft.issue=20&rft.spage=2905&rft.pages=2905-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16202905&rft_dat=%3Cgale_pubme%3EA814408790%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120774953&rft_id=info:pmid/39458733&rft_galeid=A814408790&rfr_iscdi=true |