Polypropylene Crystallinity Reduction through the Synergistic Effects of Cellulose and Silica Formed via Sol-Gel Synthesis

This study focuses on the development of environmentally sustainable polypropylene (PP)-based composites with the potential for biodegradability by incorporating cellulose and the oligomeric siloxane ES-40. Targeting industrial applications such as fused deposition modeling (FDM) 3D printing, ES-40...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-10, Vol.16 (20), p.2855
Hauptverfasser: Shambilova, Gulbarshin K, Iskakov, Rinat M, Bukanova, Aigul S, Kairliyeva, Fazilat B, Kalauova, Altynay S, Kuzin, Mikhail S, Novikov, Egor M, Gerasimenko, Pavel S, Makarov, Igor S, Skvortsov, Ivan Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 2855
container_title Polymers
container_volume 16
creator Shambilova, Gulbarshin K
Iskakov, Rinat M
Bukanova, Aigul S
Kairliyeva, Fazilat B
Kalauova, Altynay S
Kuzin, Mikhail S
Novikov, Egor M
Gerasimenko, Pavel S
Makarov, Igor S
Skvortsov, Ivan Yu
description This study focuses on the development of environmentally sustainable polypropylene (PP)-based composites with the potential for biodegradability by incorporating cellulose and the oligomeric siloxane ES-40. Targeting industrial applications such as fused deposition modeling (FDM) 3D printing, ES-40 was employed as a precursor for the in situ formation of silica particles via hydrolytic polycondensation (HPC). Two HPC approaches were investigated: a preliminary reaction in a mixture of cellulose, ethanol, and water, and a direct reaction within the molten PP matrix. The composites were thoroughly characterized using rotational rheometry, optical microscopy, differential scanning calorimetry, and dynamic mechanical analysis. Both methods resulted in composites with markedly reduced crystallinity and shrinkage compared to neat PP, with the lowest shrinkage observed in blends prepared directly in the extruder. The inclusion of cellulose not only enhances the environmental profile of these composites but also paves the way for the development of PP materials with improved biodegradability, highlighting the potential of this technique for fabricating more amorphous composites from crystalline or semi-crystalline polymers for enhancing the quality and dimensional stability of FDM-printed materials.
doi_str_mv 10.3390/polym16202855
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11510954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814408158</galeid><sourcerecordid>A814408158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-f0394b70f60ff014f61ba8343b5c11c1641728930c705af042572bfb3952a9253</originalsourceid><addsrcrecordid>eNpdUk1rHSEUldLShDTLbovQTTeTev2Yj1UJj3wUAi156Vocn75ncHSqM4Hpr68vLw1JdXFFzzn3HLwIfQRyxlhHvo7RLwPUlNBWiDfomJKGVZzV5O2L8xE6zfmelMVFXUPzHh2xjou2btkx-vOzSIwpjos3weBVWvKkvHfBTQu-NZtZTy4GPO1SnLe7Ug1eL8GkrcuT0_jCWqOnjKPFK-P97GM2WIUNXjvvtMKXMQ1mgx-cwuvoqyvj9_Sikl3-gN5Z5bM5faon6Nflxd3qurr5cfV9dX5TacZhqiwpbvuG2JpYS4DbGnrVMs56oQE01Bwa2naM6IYIZQmnoqG97VknqOqoYCfo20F3nPtiRpswJeXlmNyg0iKjcvL1S3A7uY0PEkAA6QQvCl-eFFL8PZs8ycFlXfKqYOKcJQMKpKb8sdnn_6D3cU6h5NujSNMAbduCOjugtsob6YKNpbEue2MGp2Mw1pX78xY4Jy2IPaE6EHSKOSdjn-0DkftRkK9GoeA_vcz8jP738ewv5c6weQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120771288</pqid></control><display><type>article</type><title>Polypropylene Crystallinity Reduction through the Synergistic Effects of Cellulose and Silica Formed via Sol-Gel Synthesis</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Shambilova, Gulbarshin K ; Iskakov, Rinat M ; Bukanova, Aigul S ; Kairliyeva, Fazilat B ; Kalauova, Altynay S ; Kuzin, Mikhail S ; Novikov, Egor M ; Gerasimenko, Pavel S ; Makarov, Igor S ; Skvortsov, Ivan Yu</creator><creatorcontrib>Shambilova, Gulbarshin K ; Iskakov, Rinat M ; Bukanova, Aigul S ; Kairliyeva, Fazilat B ; Kalauova, Altynay S ; Kuzin, Mikhail S ; Novikov, Egor M ; Gerasimenko, Pavel S ; Makarov, Igor S ; Skvortsov, Ivan Yu</creatorcontrib><description>This study focuses on the development of environmentally sustainable polypropylene (PP)-based composites with the potential for biodegradability by incorporating cellulose and the oligomeric siloxane ES-40. Targeting industrial applications such as fused deposition modeling (FDM) 3D printing, ES-40 was employed as a precursor for the in situ formation of silica particles via hydrolytic polycondensation (HPC). Two HPC approaches were investigated: a preliminary reaction in a mixture of cellulose, ethanol, and water, and a direct reaction within the molten PP matrix. The composites were thoroughly characterized using rotational rheometry, optical microscopy, differential scanning calorimetry, and dynamic mechanical analysis. Both methods resulted in composites with markedly reduced crystallinity and shrinkage compared to neat PP, with the lowest shrinkage observed in blends prepared directly in the extruder. The inclusion of cellulose not only enhances the environmental profile of these composites but also paves the way for the development of PP materials with improved biodegradability, highlighting the potential of this technique for fabricating more amorphous composites from crystalline or semi-crystalline polymers for enhancing the quality and dimensional stability of FDM-printed materials.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16202855</identifier><identifier>PMID: 39458683</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; Amorphous materials ; Cellulose ; Cellulose fibers ; Composite materials ; Cooling ; Crystallinity ; Dimensional stability ; Dynamic mechanical analysis ; Ethanol ; Fused deposition modeling ; Industrial applications ; Nanoparticles ; Optical microscopy ; Polymer blends ; Polymers ; Polypropylene ; Rheology ; Silica gel ; Silicon compounds ; Silicon dioxide ; Siloxanes ; Sol-gel processes ; Synergistic effect ; Three dimensional composites ; Three dimensional printing ; Viscoelasticity ; Viscosity</subject><ispartof>Polymers, 2024-10, Vol.16 (20), p.2855</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-f0394b70f60ff014f61ba8343b5c11c1641728930c705af042572bfb3952a9253</cites><orcidid>0000-0001-8183-4215 ; 0000-0001-5323-0916 ; 0009-0009-3055-3881 ; 0000-0002-0222-8266 ; 0000-0001-5898-1831 ; 0000-0002-8795-9622 ; 0000-0003-0936-4508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510954/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510954/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39458683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shambilova, Gulbarshin K</creatorcontrib><creatorcontrib>Iskakov, Rinat M</creatorcontrib><creatorcontrib>Bukanova, Aigul S</creatorcontrib><creatorcontrib>Kairliyeva, Fazilat B</creatorcontrib><creatorcontrib>Kalauova, Altynay S</creatorcontrib><creatorcontrib>Kuzin, Mikhail S</creatorcontrib><creatorcontrib>Novikov, Egor M</creatorcontrib><creatorcontrib>Gerasimenko, Pavel S</creatorcontrib><creatorcontrib>Makarov, Igor S</creatorcontrib><creatorcontrib>Skvortsov, Ivan Yu</creatorcontrib><title>Polypropylene Crystallinity Reduction through the Synergistic Effects of Cellulose and Silica Formed via Sol-Gel Synthesis</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This study focuses on the development of environmentally sustainable polypropylene (PP)-based composites with the potential for biodegradability by incorporating cellulose and the oligomeric siloxane ES-40. Targeting industrial applications such as fused deposition modeling (FDM) 3D printing, ES-40 was employed as a precursor for the in situ formation of silica particles via hydrolytic polycondensation (HPC). Two HPC approaches were investigated: a preliminary reaction in a mixture of cellulose, ethanol, and water, and a direct reaction within the molten PP matrix. The composites were thoroughly characterized using rotational rheometry, optical microscopy, differential scanning calorimetry, and dynamic mechanical analysis. Both methods resulted in composites with markedly reduced crystallinity and shrinkage compared to neat PP, with the lowest shrinkage observed in blends prepared directly in the extruder. The inclusion of cellulose not only enhances the environmental profile of these composites but also paves the way for the development of PP materials with improved biodegradability, highlighting the potential of this technique for fabricating more amorphous composites from crystalline or semi-crystalline polymers for enhancing the quality and dimensional stability of FDM-printed materials.</description><subject>3-D printers</subject><subject>Amorphous materials</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Composite materials</subject><subject>Cooling</subject><subject>Crystallinity</subject><subject>Dimensional stability</subject><subject>Dynamic mechanical analysis</subject><subject>Ethanol</subject><subject>Fused deposition modeling</subject><subject>Industrial applications</subject><subject>Nanoparticles</subject><subject>Optical microscopy</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Rheology</subject><subject>Silica gel</subject><subject>Silicon compounds</subject><subject>Silicon dioxide</subject><subject>Siloxanes</subject><subject>Sol-gel processes</subject><subject>Synergistic effect</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUk1rHSEUldLShDTLbovQTTeTev2Yj1UJj3wUAi156Vocn75ncHSqM4Hpr68vLw1JdXFFzzn3HLwIfQRyxlhHvo7RLwPUlNBWiDfomJKGVZzV5O2L8xE6zfmelMVFXUPzHh2xjou2btkx-vOzSIwpjos3weBVWvKkvHfBTQu-NZtZTy4GPO1SnLe7Ug1eL8GkrcuT0_jCWqOnjKPFK-P97GM2WIUNXjvvtMKXMQ1mgx-cwuvoqyvj9_Sikl3-gN5Z5bM5faon6Nflxd3qurr5cfV9dX5TacZhqiwpbvuG2JpYS4DbGnrVMs56oQE01Bwa2naM6IYIZQmnoqG97VknqOqoYCfo20F3nPtiRpswJeXlmNyg0iKjcvL1S3A7uY0PEkAA6QQvCl-eFFL8PZs8ycFlXfKqYOKcJQMKpKb8sdnn_6D3cU6h5NujSNMAbduCOjugtsob6YKNpbEue2MGp2Mw1pX78xY4Jy2IPaE6EHSKOSdjn-0DkftRkK9GoeA_vcz8jP738ewv5c6weQ</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Shambilova, Gulbarshin K</creator><creator>Iskakov, Rinat M</creator><creator>Bukanova, Aigul S</creator><creator>Kairliyeva, Fazilat B</creator><creator>Kalauova, Altynay S</creator><creator>Kuzin, Mikhail S</creator><creator>Novikov, Egor M</creator><creator>Gerasimenko, Pavel S</creator><creator>Makarov, Igor S</creator><creator>Skvortsov, Ivan Yu</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8183-4215</orcidid><orcidid>https://orcid.org/0000-0001-5323-0916</orcidid><orcidid>https://orcid.org/0009-0009-3055-3881</orcidid><orcidid>https://orcid.org/0000-0002-0222-8266</orcidid><orcidid>https://orcid.org/0000-0001-5898-1831</orcidid><orcidid>https://orcid.org/0000-0002-8795-9622</orcidid><orcidid>https://orcid.org/0000-0003-0936-4508</orcidid></search><sort><creationdate>20241010</creationdate><title>Polypropylene Crystallinity Reduction through the Synergistic Effects of Cellulose and Silica Formed via Sol-Gel Synthesis</title><author>Shambilova, Gulbarshin K ; Iskakov, Rinat M ; Bukanova, Aigul S ; Kairliyeva, Fazilat B ; Kalauova, Altynay S ; Kuzin, Mikhail S ; Novikov, Egor M ; Gerasimenko, Pavel S ; Makarov, Igor S ; Skvortsov, Ivan Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-f0394b70f60ff014f61ba8343b5c11c1641728930c705af042572bfb3952a9253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Amorphous materials</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Composite materials</topic><topic>Cooling</topic><topic>Crystallinity</topic><topic>Dimensional stability</topic><topic>Dynamic mechanical analysis</topic><topic>Ethanol</topic><topic>Fused deposition modeling</topic><topic>Industrial applications</topic><topic>Nanoparticles</topic><topic>Optical microscopy</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Rheology</topic><topic>Silica gel</topic><topic>Silicon compounds</topic><topic>Silicon dioxide</topic><topic>Siloxanes</topic><topic>Sol-gel processes</topic><topic>Synergistic effect</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shambilova, Gulbarshin K</creatorcontrib><creatorcontrib>Iskakov, Rinat M</creatorcontrib><creatorcontrib>Bukanova, Aigul S</creatorcontrib><creatorcontrib>Kairliyeva, Fazilat B</creatorcontrib><creatorcontrib>Kalauova, Altynay S</creatorcontrib><creatorcontrib>Kuzin, Mikhail S</creatorcontrib><creatorcontrib>Novikov, Egor M</creatorcontrib><creatorcontrib>Gerasimenko, Pavel S</creatorcontrib><creatorcontrib>Makarov, Igor S</creatorcontrib><creatorcontrib>Skvortsov, Ivan Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shambilova, Gulbarshin K</au><au>Iskakov, Rinat M</au><au>Bukanova, Aigul S</au><au>Kairliyeva, Fazilat B</au><au>Kalauova, Altynay S</au><au>Kuzin, Mikhail S</au><au>Novikov, Egor M</au><au>Gerasimenko, Pavel S</au><au>Makarov, Igor S</au><au>Skvortsov, Ivan Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polypropylene Crystallinity Reduction through the Synergistic Effects of Cellulose and Silica Formed via Sol-Gel Synthesis</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-10-10</date><risdate>2024</risdate><volume>16</volume><issue>20</issue><spage>2855</spage><pages>2855-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This study focuses on the development of environmentally sustainable polypropylene (PP)-based composites with the potential for biodegradability by incorporating cellulose and the oligomeric siloxane ES-40. Targeting industrial applications such as fused deposition modeling (FDM) 3D printing, ES-40 was employed as a precursor for the in situ formation of silica particles via hydrolytic polycondensation (HPC). Two HPC approaches were investigated: a preliminary reaction in a mixture of cellulose, ethanol, and water, and a direct reaction within the molten PP matrix. The composites were thoroughly characterized using rotational rheometry, optical microscopy, differential scanning calorimetry, and dynamic mechanical analysis. Both methods resulted in composites with markedly reduced crystallinity and shrinkage compared to neat PP, with the lowest shrinkage observed in blends prepared directly in the extruder. The inclusion of cellulose not only enhances the environmental profile of these composites but also paves the way for the development of PP materials with improved biodegradability, highlighting the potential of this technique for fabricating more amorphous composites from crystalline or semi-crystalline polymers for enhancing the quality and dimensional stability of FDM-printed materials.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39458683</pmid><doi>10.3390/polym16202855</doi><orcidid>https://orcid.org/0000-0001-8183-4215</orcidid><orcidid>https://orcid.org/0000-0001-5323-0916</orcidid><orcidid>https://orcid.org/0009-0009-3055-3881</orcidid><orcidid>https://orcid.org/0000-0002-0222-8266</orcidid><orcidid>https://orcid.org/0000-0001-5898-1831</orcidid><orcidid>https://orcid.org/0000-0002-8795-9622</orcidid><orcidid>https://orcid.org/0000-0003-0936-4508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2024-10, Vol.16 (20), p.2855
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11510954
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 3-D printers
Amorphous materials
Cellulose
Cellulose fibers
Composite materials
Cooling
Crystallinity
Dimensional stability
Dynamic mechanical analysis
Ethanol
Fused deposition modeling
Industrial applications
Nanoparticles
Optical microscopy
Polymer blends
Polymers
Polypropylene
Rheology
Silica gel
Silicon compounds
Silicon dioxide
Siloxanes
Sol-gel processes
Synergistic effect
Three dimensional composites
Three dimensional printing
Viscoelasticity
Viscosity
title Polypropylene Crystallinity Reduction through the Synergistic Effects of Cellulose and Silica Formed via Sol-Gel Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polypropylene%20Crystallinity%20Reduction%20through%20the%20Synergistic%20Effects%20of%20Cellulose%20and%20Silica%20Formed%20via%20Sol-Gel%20Synthesis&rft.jtitle=Polymers&rft.au=Shambilova,%20Gulbarshin%20K&rft.date=2024-10-10&rft.volume=16&rft.issue=20&rft.spage=2855&rft.pages=2855-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16202855&rft_dat=%3Cgale_pubme%3EA814408158%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120771288&rft_id=info:pmid/39458683&rft_galeid=A814408158&rfr_iscdi=true