Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties
Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the prac...
Gespeichert in:
Veröffentlicht in: | Materials 2024-10, Vol.17 (20), p.5044 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 5044 |
container_title | Materials |
container_volume | 17 |
creator | Pattipaka, Srinivas Lim, Yeseul Jeong, Yundong Peddigari, Mahesh Min, Yuho Jeong, Jae Won Jang, Jongmoon Kim, Sung-Dae Hwang, Geon-Tae |
description | Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications of energy storage technologies. In this work, we present a series of relaxor ferroelectric ceramics (1−x) [0.94 Bi0.5Na0.5TiO3 –0.06BaTiO3]– x Sr0.7Bi0.2TiO3 (1-x BNT-BT- x SBT; x = 0, 0.20, 0.225, 0.25, 0.275 and 0.30) with improved energy storage performances by combining relaxor and antiferroelectric properties. XRD, Raman spectra, and SEM characterizations of BNT-BT-SBT ceramics revealed a rhombohedral–tetragonal phase, highly dynamic polar nanoregions, and a reduction in grain size with a homogeneous and dense microstructure, respectively. A high dielectric constant of 1654 at 1 kHz and low remnant polarization of 1.39 µC/cm2 were obtained with the addition of SBT for x = 0.275; these are beneficial for improving energy storage performance. The diffuse phase transition of these ceramics displays relaxor behavior, which is improved with SBT and confirmed by modified the Curie–Weiss law. The combining relaxor and antiferroelectric properties with fine grain size by the incorporation of SBT enables an enhanced maximum polarization of a minimized P-E loop, leading to an improved BDS. As a result, a high recoverable energy density Wrec of 1.02 J/cm3 and a high energy efficiency η of 75.98% at 89 kV/cm were achieved for an optimum composition of 0.725 [0.94BNT-0.06BT]-0.275 SBT. These results demonstrate that BNT-based relaxor ferroelectric ceramics are good candidates for next-generation ceramic capacitors and offer a potential strategy for exploiting novel high-performance ceramic materials. |
doi_str_mv | 10.3390/ma17205044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11509821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121063118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-7612774677b1861cccb688ba194aa3395809e6f7384e5b27dddfa3b28ac5989c3</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhk1paUKaS3-BoZdSmNQee8b2qSRL2gZCE9r0bDQezcZhxt7KsyF76l_vLAn90kES6OFFr8TYaylOlHLi_QTS1KIRWj9jh9K5tpJO6-d_9QfsuJQ7sYRS0tbuJTtQTjfOaHfIfl5MG8r3Ma35fIv8PCGtd_zbnAnWyK-RhkwTpIA8Jn4WxUnzBZZ0E69UdQYFe75CgimGwrsdX-Wpi2kv9hVHeMjEIfX8NM1xQKKMI4aZYuDXlDdIc8Tyir0YYCx4_FSP2PeP5zerz9Xl1aeL1ellFWqj5sq0sjZGt8Z00rYyhNC11naw-ANY7tBY4bAdjLIam642fd8PoLraQmicdUEdsQ-PupttN2EfMM0Eo99QnIB2PkP0_05SvPXrfO-lbISztVwU3j4pUP6xxTL7KZaA4wgJ87Z4JWspWiWlXdA3_6F3eUtp8benhBHWabNQ7x6pQLkUwuH3NlL4_W_9n9-qX9IRlPI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120708947</pqid></control><display><type>article</type><title>Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Pattipaka, Srinivas ; Lim, Yeseul ; Jeong, Yundong ; Peddigari, Mahesh ; Min, Yuho ; Jeong, Jae Won ; Jang, Jongmoon ; Kim, Sung-Dae ; Hwang, Geon-Tae</creator><creatorcontrib>Pattipaka, Srinivas ; Lim, Yeseul ; Jeong, Yundong ; Peddigari, Mahesh ; Min, Yuho ; Jeong, Jae Won ; Jang, Jongmoon ; Kim, Sung-Dae ; Hwang, Geon-Tae</creatorcontrib><description>Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications of energy storage technologies. In this work, we present a series of relaxor ferroelectric ceramics (1−x) [0.94 Bi0.5Na0.5TiO3 –0.06BaTiO3]– x Sr0.7Bi0.2TiO3 (1-x BNT-BT- x SBT; x = 0, 0.20, 0.225, 0.25, 0.275 and 0.30) with improved energy storage performances by combining relaxor and antiferroelectric properties. XRD, Raman spectra, and SEM characterizations of BNT-BT-SBT ceramics revealed a rhombohedral–tetragonal phase, highly dynamic polar nanoregions, and a reduction in grain size with a homogeneous and dense microstructure, respectively. A high dielectric constant of 1654 at 1 kHz and low remnant polarization of 1.39 µC/cm2 were obtained with the addition of SBT for x = 0.275; these are beneficial for improving energy storage performance. The diffuse phase transition of these ceramics displays relaxor behavior, which is improved with SBT and confirmed by modified the Curie–Weiss law. The combining relaxor and antiferroelectric properties with fine grain size by the incorporation of SBT enables an enhanced maximum polarization of a minimized P-E loop, leading to an improved BDS. As a result, a high recoverable energy density Wrec of 1.02 J/cm3 and a high energy efficiency η of 75.98% at 89 kV/cm were achieved for an optimum composition of 0.725 [0.94BNT-0.06BT]-0.275 SBT. These results demonstrate that BNT-based relaxor ferroelectric ceramics are good candidates for next-generation ceramic capacitors and offer a potential strategy for exploiting novel high-performance ceramic materials.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17205044</identifier><identifier>PMID: 39459749</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antiferroelectricity ; Bismuth titanate ; Capacitors ; Ceramics ; Dielectric properties ; Electric fields ; Energy efficiency ; Energy storage ; Fatigue strength ; Ferroelectric materials ; Grain size ; Incorporation ; Phase transitions ; Polarization ; Polyvinyl alcohol ; Raman spectra ; Relaxors ; Solid solutions ; Temperature</subject><ispartof>Materials, 2024-10, Vol.17 (20), p.5044</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-7612774677b1861cccb688ba194aa3395809e6f7384e5b27dddfa3b28ac5989c3</cites><orcidid>0000-0002-0784-4818 ; 0000-0003-4006-6111 ; 0000-0003-0127-8242 ; 0000-0001-6887-8555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509821/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509821/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Pattipaka, Srinivas</creatorcontrib><creatorcontrib>Lim, Yeseul</creatorcontrib><creatorcontrib>Jeong, Yundong</creatorcontrib><creatorcontrib>Peddigari, Mahesh</creatorcontrib><creatorcontrib>Min, Yuho</creatorcontrib><creatorcontrib>Jeong, Jae Won</creatorcontrib><creatorcontrib>Jang, Jongmoon</creatorcontrib><creatorcontrib>Kim, Sung-Dae</creatorcontrib><creatorcontrib>Hwang, Geon-Tae</creatorcontrib><title>Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties</title><title>Materials</title><description>Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications of energy storage technologies. In this work, we present a series of relaxor ferroelectric ceramics (1−x) [0.94 Bi0.5Na0.5TiO3 –0.06BaTiO3]– x Sr0.7Bi0.2TiO3 (1-x BNT-BT- x SBT; x = 0, 0.20, 0.225, 0.25, 0.275 and 0.30) with improved energy storage performances by combining relaxor and antiferroelectric properties. XRD, Raman spectra, and SEM characterizations of BNT-BT-SBT ceramics revealed a rhombohedral–tetragonal phase, highly dynamic polar nanoregions, and a reduction in grain size with a homogeneous and dense microstructure, respectively. A high dielectric constant of 1654 at 1 kHz and low remnant polarization of 1.39 µC/cm2 were obtained with the addition of SBT for x = 0.275; these are beneficial for improving energy storage performance. The diffuse phase transition of these ceramics displays relaxor behavior, which is improved with SBT and confirmed by modified the Curie–Weiss law. The combining relaxor and antiferroelectric properties with fine grain size by the incorporation of SBT enables an enhanced maximum polarization of a minimized P-E loop, leading to an improved BDS. As a result, a high recoverable energy density Wrec of 1.02 J/cm3 and a high energy efficiency η of 75.98% at 89 kV/cm were achieved for an optimum composition of 0.725 [0.94BNT-0.06BT]-0.275 SBT. These results demonstrate that BNT-based relaxor ferroelectric ceramics are good candidates for next-generation ceramic capacitors and offer a potential strategy for exploiting novel high-performance ceramic materials.</description><subject>Antiferroelectricity</subject><subject>Bismuth titanate</subject><subject>Capacitors</subject><subject>Ceramics</subject><subject>Dielectric properties</subject><subject>Electric fields</subject><subject>Energy efficiency</subject><subject>Energy storage</subject><subject>Fatigue strength</subject><subject>Ferroelectric materials</subject><subject>Grain size</subject><subject>Incorporation</subject><subject>Phase transitions</subject><subject>Polarization</subject><subject>Polyvinyl alcohol</subject><subject>Raman spectra</subject><subject>Relaxors</subject><subject>Solid solutions</subject><subject>Temperature</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1rHDEMhk1paUKaS3-BoZdSmNQee8b2qSRL2gZCE9r0bDQezcZhxt7KsyF76l_vLAn90kES6OFFr8TYaylOlHLi_QTS1KIRWj9jh9K5tpJO6-d_9QfsuJQ7sYRS0tbuJTtQTjfOaHfIfl5MG8r3Ma35fIv8PCGtd_zbnAnWyK-RhkwTpIA8Jn4WxUnzBZZ0E69UdQYFe75CgimGwrsdX-Wpi2kv9hVHeMjEIfX8NM1xQKKMI4aZYuDXlDdIc8Tyir0YYCx4_FSP2PeP5zerz9Xl1aeL1ellFWqj5sq0sjZGt8Z00rYyhNC11naw-ANY7tBY4bAdjLIam642fd8PoLraQmicdUEdsQ-PupttN2EfMM0Eo99QnIB2PkP0_05SvPXrfO-lbISztVwU3j4pUP6xxTL7KZaA4wgJ87Z4JWspWiWlXdA3_6F3eUtp8benhBHWabNQ7x6pQLkUwuH3NlL4_W_9n9-qX9IRlPI</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Pattipaka, Srinivas</creator><creator>Lim, Yeseul</creator><creator>Jeong, Yundong</creator><creator>Peddigari, Mahesh</creator><creator>Min, Yuho</creator><creator>Jeong, Jae Won</creator><creator>Jang, Jongmoon</creator><creator>Kim, Sung-Dae</creator><creator>Hwang, Geon-Tae</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0784-4818</orcidid><orcidid>https://orcid.org/0000-0003-4006-6111</orcidid><orcidid>https://orcid.org/0000-0003-0127-8242</orcidid><orcidid>https://orcid.org/0000-0001-6887-8555</orcidid></search><sort><creationdate>20241015</creationdate><title>Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties</title><author>Pattipaka, Srinivas ; Lim, Yeseul ; Jeong, Yundong ; Peddigari, Mahesh ; Min, Yuho ; Jeong, Jae Won ; Jang, Jongmoon ; Kim, Sung-Dae ; Hwang, Geon-Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-7612774677b1861cccb688ba194aa3395809e6f7384e5b27dddfa3b28ac5989c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiferroelectricity</topic><topic>Bismuth titanate</topic><topic>Capacitors</topic><topic>Ceramics</topic><topic>Dielectric properties</topic><topic>Electric fields</topic><topic>Energy efficiency</topic><topic>Energy storage</topic><topic>Fatigue strength</topic><topic>Ferroelectric materials</topic><topic>Grain size</topic><topic>Incorporation</topic><topic>Phase transitions</topic><topic>Polarization</topic><topic>Polyvinyl alcohol</topic><topic>Raman spectra</topic><topic>Relaxors</topic><topic>Solid solutions</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pattipaka, Srinivas</creatorcontrib><creatorcontrib>Lim, Yeseul</creatorcontrib><creatorcontrib>Jeong, Yundong</creatorcontrib><creatorcontrib>Peddigari, Mahesh</creatorcontrib><creatorcontrib>Min, Yuho</creatorcontrib><creatorcontrib>Jeong, Jae Won</creatorcontrib><creatorcontrib>Jang, Jongmoon</creatorcontrib><creatorcontrib>Kim, Sung-Dae</creatorcontrib><creatorcontrib>Hwang, Geon-Tae</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pattipaka, Srinivas</au><au>Lim, Yeseul</au><au>Jeong, Yundong</au><au>Peddigari, Mahesh</au><au>Min, Yuho</au><au>Jeong, Jae Won</au><au>Jang, Jongmoon</au><au>Kim, Sung-Dae</au><au>Hwang, Geon-Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties</atitle><jtitle>Materials</jtitle><date>2024-10-15</date><risdate>2024</risdate><volume>17</volume><issue>20</issue><spage>5044</spage><pages>5044-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications of energy storage technologies. In this work, we present a series of relaxor ferroelectric ceramics (1−x) [0.94 Bi0.5Na0.5TiO3 –0.06BaTiO3]– x Sr0.7Bi0.2TiO3 (1-x BNT-BT- x SBT; x = 0, 0.20, 0.225, 0.25, 0.275 and 0.30) with improved energy storage performances by combining relaxor and antiferroelectric properties. XRD, Raman spectra, and SEM characterizations of BNT-BT-SBT ceramics revealed a rhombohedral–tetragonal phase, highly dynamic polar nanoregions, and a reduction in grain size with a homogeneous and dense microstructure, respectively. A high dielectric constant of 1654 at 1 kHz and low remnant polarization of 1.39 µC/cm2 were obtained with the addition of SBT for x = 0.275; these are beneficial for improving energy storage performance. The diffuse phase transition of these ceramics displays relaxor behavior, which is improved with SBT and confirmed by modified the Curie–Weiss law. The combining relaxor and antiferroelectric properties with fine grain size by the incorporation of SBT enables an enhanced maximum polarization of a minimized P-E loop, leading to an improved BDS. As a result, a high recoverable energy density Wrec of 1.02 J/cm3 and a high energy efficiency η of 75.98% at 89 kV/cm were achieved for an optimum composition of 0.725 [0.94BNT-0.06BT]-0.275 SBT. These results demonstrate that BNT-based relaxor ferroelectric ceramics are good candidates for next-generation ceramic capacitors and offer a potential strategy for exploiting novel high-performance ceramic materials.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>39459749</pmid><doi>10.3390/ma17205044</doi><orcidid>https://orcid.org/0000-0002-0784-4818</orcidid><orcidid>https://orcid.org/0000-0003-4006-6111</orcidid><orcidid>https://orcid.org/0000-0003-0127-8242</orcidid><orcidid>https://orcid.org/0000-0001-6887-8555</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-10, Vol.17 (20), p.5044 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11509821 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Antiferroelectricity Bismuth titanate Capacitors Ceramics Dielectric properties Electric fields Energy efficiency Energy storage Fatigue strength Ferroelectric materials Grain size Incorporation Phase transitions Polarization Polyvinyl alcohol Raman spectra Relaxors Solid solutions Temperature |
title | Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Energy%20Storage%20Performance%20in%20Bi0.5Na0.5TiO3-Based%20Ceramics%20by%20Combining%20Relaxor%20and%20Antiferroelectric%20Properties&rft.jtitle=Materials&rft.au=Pattipaka,%20Srinivas&rft.date=2024-10-15&rft.volume=17&rft.issue=20&rft.spage=5044&rft.pages=5044-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17205044&rft_dat=%3Cproquest_pubme%3E3121063118%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120708947&rft_id=info:pmid/39459749&rfr_iscdi=true |