Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology

Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2024-10, Vol.124 (20), p.11523-11543
Hauptverfasser: Infield, Daniel T., Schene, Miranda E., Galpin, Jason D., Ahern, Christopher A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11543
container_issue 20
container_start_page 11523
container_title Chemical reviews
container_volume 124
creator Infield, Daniel T.
Schene, Miranda E.
Galpin, Jason D.
Ahern, Christopher A.
description Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.
doi_str_mv 10.1021/acs.chemrev.4c00306
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11503617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099798351</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-faf5627160ca69a26c7e3033458265e23e077a8975e2df546dc1eb6c84af40ae3</originalsourceid><addsrcrecordid>eNqNkcFv0zAYxS3ExMrgL0BClriMQ7rPdmwnXKZRjTFpiAP0bHnOlzVTYhc7meh_j6t21eAwcbKt93vPn_0IecdgzoCzM-vS3K1wiPgwLx2AAPWCzJjkUKiqhpdkBgB1wZWSx-R1Svf5KCXXr8ixqDlokHpGhiv0OHaOLkKD9PL32vrUBU_bEOk3dCvru7SVf4xT02GinafXWV5kwWOfPtELT0-X_qO34xRtT5d-6w5tJnDI1rih1jf0cxf6cLd5Q45a2yd8u19PyPLL5c_F1-Lm-9X14uKmsKLSY9HaViqumQJnVW25choFCFHKiiuJXCBobata533TylI1juGtclVp2xIsihNyvstdT7cDNg79mIcz69gNNm5MsJ35W_HdytyFB8OYBKGYzgmn-4QYfk2YRpNf47DvrccwJSOYLJmu4H9QqGtdV0KyjH74B70PU_T5K3IgZ4KBkHWmxI5yMaQUsT0MzsBsqze5erOv3uyrz673T9988Dx2nYGzHbB1H-59LvIPTN68kQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121310359</pqid></control><display><type>article</type><title>Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology</title><source>MEDLINE</source><source>ACS Publications</source><creator>Infield, Daniel T. ; Schene, Miranda E. ; Galpin, Jason D. ; Ahern, Christopher A.</creator><creatorcontrib>Infield, Daniel T. ; Schene, Miranda E. ; Galpin, Jason D. ; Ahern, Christopher A.</creatorcontrib><description>Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.</description><identifier>ISSN: 0009-2665</identifier><identifier>ISSN: 1520-6890</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.4c00306</identifier><identifier>PMID: 39207057</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino acids ; Amino Acids - chemistry ; Amino Acids - genetics ; Animals ; Aromaticity ; Atmospheric chemistry ; Biological effects ; Biology ; Chemical activity ; Crosslinking ; Fluorescence ; Genetic Code ; human health ; Humans ; Ion channels ; Ion Channels - chemistry ; Ion Channels - genetics ; Ion Channels - metabolism ; mutagenesis ; Photochemistry ; Proteins ; Real time ; Review</subject><ispartof>Chemical reviews, 2024-10, Vol.124 (20), p.11523-11543</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Oct 23, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a387t-faf5627160ca69a26c7e3033458265e23e077a8975e2df546dc1eb6c84af40ae3</cites><orcidid>0000-0002-7975-2744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.4c00306$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.4c00306$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39207057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Infield, Daniel T.</creatorcontrib><creatorcontrib>Schene, Miranda E.</creatorcontrib><creatorcontrib>Galpin, Jason D.</creatorcontrib><creatorcontrib>Ahern, Christopher A.</creatorcontrib><title>Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.</description><subject>Amino acids</subject><subject>Amino Acids - chemistry</subject><subject>Amino Acids - genetics</subject><subject>Animals</subject><subject>Aromaticity</subject><subject>Atmospheric chemistry</subject><subject>Biological effects</subject><subject>Biology</subject><subject>Chemical activity</subject><subject>Crosslinking</subject><subject>Fluorescence</subject><subject>Genetic Code</subject><subject>human health</subject><subject>Humans</subject><subject>Ion channels</subject><subject>Ion Channels - chemistry</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>mutagenesis</subject><subject>Photochemistry</subject><subject>Proteins</subject><subject>Real time</subject><subject>Review</subject><issn>0009-2665</issn><issn>1520-6890</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFv0zAYxS3ExMrgL0BClriMQ7rPdmwnXKZRjTFpiAP0bHnOlzVTYhc7meh_j6t21eAwcbKt93vPn_0IecdgzoCzM-vS3K1wiPgwLx2AAPWCzJjkUKiqhpdkBgB1wZWSx-R1Svf5KCXXr8ixqDlokHpGhiv0OHaOLkKD9PL32vrUBU_bEOk3dCvru7SVf4xT02GinafXWV5kwWOfPtELT0-X_qO34xRtT5d-6w5tJnDI1rih1jf0cxf6cLd5Q45a2yd8u19PyPLL5c_F1-Lm-9X14uKmsKLSY9HaViqumQJnVW25choFCFHKiiuJXCBobata533TylI1juGtclVp2xIsihNyvstdT7cDNg79mIcz69gNNm5MsJ35W_HdytyFB8OYBKGYzgmn-4QYfk2YRpNf47DvrccwJSOYLJmu4H9QqGtdV0KyjH74B70PU_T5K3IgZ4KBkHWmxI5yMaQUsT0MzsBsqze5erOv3uyrz673T9988Dx2nYGzHbB1H-59LvIPTN68kQ</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Infield, Daniel T.</creator><creator>Schene, Miranda E.</creator><creator>Galpin, Jason D.</creator><creator>Ahern, Christopher A.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7975-2744</orcidid></search><sort><creationdate>20241023</creationdate><title>Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology</title><author>Infield, Daniel T. ; Schene, Miranda E. ; Galpin, Jason D. ; Ahern, Christopher A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-faf5627160ca69a26c7e3033458265e23e077a8975e2df546dc1eb6c84af40ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>Amino Acids - chemistry</topic><topic>Amino Acids - genetics</topic><topic>Animals</topic><topic>Aromaticity</topic><topic>Atmospheric chemistry</topic><topic>Biological effects</topic><topic>Biology</topic><topic>Chemical activity</topic><topic>Crosslinking</topic><topic>Fluorescence</topic><topic>Genetic Code</topic><topic>human health</topic><topic>Humans</topic><topic>Ion channels</topic><topic>Ion Channels - chemistry</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>mutagenesis</topic><topic>Photochemistry</topic><topic>Proteins</topic><topic>Real time</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Infield, Daniel T.</creatorcontrib><creatorcontrib>Schene, Miranda E.</creatorcontrib><creatorcontrib>Galpin, Jason D.</creatorcontrib><creatorcontrib>Ahern, Christopher A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Infield, Daniel T.</au><au>Schene, Miranda E.</au><au>Galpin, Jason D.</au><au>Ahern, Christopher A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2024-10-23</date><risdate>2024</risdate><volume>124</volume><issue>20</issue><spage>11523</spage><epage>11543</epage><pages>11523-11543</pages><issn>0009-2665</issn><issn>1520-6890</issn><eissn>1520-6890</eissn><abstract>Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39207057</pmid><doi>10.1021/acs.chemrev.4c00306</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7975-2744</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2024-10, Vol.124 (20), p.11523-11543
issn 0009-2665
1520-6890
1520-6890
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11503617
source MEDLINE; ACS Publications
subjects Amino acids
Amino Acids - chemistry
Amino Acids - genetics
Animals
Aromaticity
Atmospheric chemistry
Biological effects
Biology
Chemical activity
Crosslinking
Fluorescence
Genetic Code
human health
Humans
Ion channels
Ion Channels - chemistry
Ion Channels - genetics
Ion Channels - metabolism
mutagenesis
Photochemistry
Proteins
Real time
Review
title Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Code%20Expansion%20for%20Mechanistic%20Studies%20in%20Ion%20Channels:%20An%20(Un)natural%20Union%20of%20Chemistry%20and%20Biology&rft.jtitle=Chemical%20reviews&rft.au=Infield,%20Daniel%20T.&rft.date=2024-10-23&rft.volume=124&rft.issue=20&rft.spage=11523&rft.epage=11543&rft.pages=11523-11543&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.4c00306&rft_dat=%3Cproquest_pubme%3E3099798351%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121310359&rft_id=info:pmid/39207057&rfr_iscdi=true