Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology
Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2024-10, Vol.124 (20), p.11523-11543 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11543 |
---|---|
container_issue | 20 |
container_start_page | 11523 |
container_title | Chemical reviews |
container_volume | 124 |
creator | Infield, Daniel T. Schene, Miranda E. Galpin, Jason D. Ahern, Christopher A. |
description | Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics. |
doi_str_mv | 10.1021/acs.chemrev.4c00306 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11503617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099798351</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-faf5627160ca69a26c7e3033458265e23e077a8975e2df546dc1eb6c84af40ae3</originalsourceid><addsrcrecordid>eNqNkcFv0zAYxS3ExMrgL0BClriMQ7rPdmwnXKZRjTFpiAP0bHnOlzVTYhc7meh_j6t21eAwcbKt93vPn_0IecdgzoCzM-vS3K1wiPgwLx2AAPWCzJjkUKiqhpdkBgB1wZWSx-R1Svf5KCXXr8ixqDlokHpGhiv0OHaOLkKD9PL32vrUBU_bEOk3dCvru7SVf4xT02GinafXWV5kwWOfPtELT0-X_qO34xRtT5d-6w5tJnDI1rih1jf0cxf6cLd5Q45a2yd8u19PyPLL5c_F1-Lm-9X14uKmsKLSY9HaViqumQJnVW25choFCFHKiiuJXCBobata533TylI1juGtclVp2xIsihNyvstdT7cDNg79mIcz69gNNm5MsJ35W_HdytyFB8OYBKGYzgmn-4QYfk2YRpNf47DvrccwJSOYLJmu4H9QqGtdV0KyjH74B70PU_T5K3IgZ4KBkHWmxI5yMaQUsT0MzsBsqze5erOv3uyrz673T9988Dx2nYGzHbB1H-59LvIPTN68kQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121310359</pqid></control><display><type>article</type><title>Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology</title><source>MEDLINE</source><source>ACS Publications</source><creator>Infield, Daniel T. ; Schene, Miranda E. ; Galpin, Jason D. ; Ahern, Christopher A.</creator><creatorcontrib>Infield, Daniel T. ; Schene, Miranda E. ; Galpin, Jason D. ; Ahern, Christopher A.</creatorcontrib><description>Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.</description><identifier>ISSN: 0009-2665</identifier><identifier>ISSN: 1520-6890</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.4c00306</identifier><identifier>PMID: 39207057</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino acids ; Amino Acids - chemistry ; Amino Acids - genetics ; Animals ; Aromaticity ; Atmospheric chemistry ; Biological effects ; Biology ; Chemical activity ; Crosslinking ; Fluorescence ; Genetic Code ; human health ; Humans ; Ion channels ; Ion Channels - chemistry ; Ion Channels - genetics ; Ion Channels - metabolism ; mutagenesis ; Photochemistry ; Proteins ; Real time ; Review</subject><ispartof>Chemical reviews, 2024-10, Vol.124 (20), p.11523-11543</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Oct 23, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a387t-faf5627160ca69a26c7e3033458265e23e077a8975e2df546dc1eb6c84af40ae3</cites><orcidid>0000-0002-7975-2744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.4c00306$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.4c00306$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39207057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Infield, Daniel T.</creatorcontrib><creatorcontrib>Schene, Miranda E.</creatorcontrib><creatorcontrib>Galpin, Jason D.</creatorcontrib><creatorcontrib>Ahern, Christopher A.</creatorcontrib><title>Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.</description><subject>Amino acids</subject><subject>Amino Acids - chemistry</subject><subject>Amino Acids - genetics</subject><subject>Animals</subject><subject>Aromaticity</subject><subject>Atmospheric chemistry</subject><subject>Biological effects</subject><subject>Biology</subject><subject>Chemical activity</subject><subject>Crosslinking</subject><subject>Fluorescence</subject><subject>Genetic Code</subject><subject>human health</subject><subject>Humans</subject><subject>Ion channels</subject><subject>Ion Channels - chemistry</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>mutagenesis</subject><subject>Photochemistry</subject><subject>Proteins</subject><subject>Real time</subject><subject>Review</subject><issn>0009-2665</issn><issn>1520-6890</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFv0zAYxS3ExMrgL0BClriMQ7rPdmwnXKZRjTFpiAP0bHnOlzVTYhc7meh_j6t21eAwcbKt93vPn_0IecdgzoCzM-vS3K1wiPgwLx2AAPWCzJjkUKiqhpdkBgB1wZWSx-R1Svf5KCXXr8ixqDlokHpGhiv0OHaOLkKD9PL32vrUBU_bEOk3dCvru7SVf4xT02GinafXWV5kwWOfPtELT0-X_qO34xRtT5d-6w5tJnDI1rih1jf0cxf6cLd5Q45a2yd8u19PyPLL5c_F1-Lm-9X14uKmsKLSY9HaViqumQJnVW25choFCFHKiiuJXCBobata533TylI1juGtclVp2xIsihNyvstdT7cDNg79mIcz69gNNm5MsJ35W_HdytyFB8OYBKGYzgmn-4QYfk2YRpNf47DvrccwJSOYLJmu4H9QqGtdV0KyjH74B70PU_T5K3IgZ4KBkHWmxI5yMaQUsT0MzsBsqze5erOv3uyrz673T9988Dx2nYGzHbB1H-59LvIPTN68kQ</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Infield, Daniel T.</creator><creator>Schene, Miranda E.</creator><creator>Galpin, Jason D.</creator><creator>Ahern, Christopher A.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7975-2744</orcidid></search><sort><creationdate>20241023</creationdate><title>Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology</title><author>Infield, Daniel T. ; Schene, Miranda E. ; Galpin, Jason D. ; Ahern, Christopher A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-faf5627160ca69a26c7e3033458265e23e077a8975e2df546dc1eb6c84af40ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>Amino Acids - chemistry</topic><topic>Amino Acids - genetics</topic><topic>Animals</topic><topic>Aromaticity</topic><topic>Atmospheric chemistry</topic><topic>Biological effects</topic><topic>Biology</topic><topic>Chemical activity</topic><topic>Crosslinking</topic><topic>Fluorescence</topic><topic>Genetic Code</topic><topic>human health</topic><topic>Humans</topic><topic>Ion channels</topic><topic>Ion Channels - chemistry</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>mutagenesis</topic><topic>Photochemistry</topic><topic>Proteins</topic><topic>Real time</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Infield, Daniel T.</creatorcontrib><creatorcontrib>Schene, Miranda E.</creatorcontrib><creatorcontrib>Galpin, Jason D.</creatorcontrib><creatorcontrib>Ahern, Christopher A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Infield, Daniel T.</au><au>Schene, Miranda E.</au><au>Galpin, Jason D.</au><au>Ahern, Christopher A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2024-10-23</date><risdate>2024</risdate><volume>124</volume><issue>20</issue><spage>11523</spage><epage>11543</epage><pages>11523-11543</pages><issn>0009-2665</issn><issn>1520-6890</issn><eissn>1520-6890</eissn><abstract>Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39207057</pmid><doi>10.1021/acs.chemrev.4c00306</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7975-2744</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2024-10, Vol.124 (20), p.11523-11543 |
issn | 0009-2665 1520-6890 1520-6890 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11503617 |
source | MEDLINE; ACS Publications |
subjects | Amino acids Amino Acids - chemistry Amino Acids - genetics Animals Aromaticity Atmospheric chemistry Biological effects Biology Chemical activity Crosslinking Fluorescence Genetic Code human health Humans Ion channels Ion Channels - chemistry Ion Channels - genetics Ion Channels - metabolism mutagenesis Photochemistry Proteins Real time Review |
title | Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Code%20Expansion%20for%20Mechanistic%20Studies%20in%20Ion%20Channels:%20An%20(Un)natural%20Union%20of%20Chemistry%20and%20Biology&rft.jtitle=Chemical%20reviews&rft.au=Infield,%20Daniel%20T.&rft.date=2024-10-23&rft.volume=124&rft.issue=20&rft.spage=11523&rft.epage=11543&rft.pages=11523-11543&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.4c00306&rft_dat=%3Cproquest_pubme%3E3099798351%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121310359&rft_id=info:pmid/39207057&rfr_iscdi=true |