Fine‐tuning the N‐glycosylation of recombinant human erythropoietin using Chlamydomonas reinhardtii mutants
Summary Microalgae are considered as attractive expression systems for the production of biologics. As photosynthetic unicellular organisms, they do not require costly and complex media for growing and are able to secrete proteins and perform protein glycosylation. Some biologics have been successfu...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2024-11, Vol.22 (11), p.3018-3027 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3027 |
---|---|
container_issue | 11 |
container_start_page | 3018 |
container_title | Plant biotechnology journal |
container_volume | 22 |
creator | Leprovost, S. Plasson, C. Balieu, J. Walet‐Balieu, M‐L. Lerouge, P. Bardor, M. Mathieu‐Rivet, E. |
description | Summary
Microalgae are considered as attractive expression systems for the production of biologics. As photosynthetic unicellular organisms, they do not require costly and complex media for growing and are able to secrete proteins and perform protein glycosylation. Some biologics have been successfully produced in the green microalgae Chlamydomonas reinhardtii. However, post‐translational modifications like glycosylation of these Chlamydomonas‐made biologics have poorly been investigated so far. Therefore, in this study, we report on the first structural investigation of glycans linked to human erythropoietin (hEPO) expressed in a wild‐type C. reinhardtii strain and mutants impaired in key Golgi glycosyltransferases. The glycoproteomic analysis of recombinant hEPO (rhEPO) expressed in the wild‐type strain demonstrated that the three N‐glycosylation sites are 100% glycosylated with mature N‐glycans containing four to five mannose residues and carrying core xylose, core fucose and O‐methyl groups. Moreover, expression in C. reinhardtii insertional mutants defective in xylosyltransferases A and B and fucosyltransferase resulted in drastic decreases of core xylosylation and core fucosylation of glycans N‐linked to the rhEPOs, thus demonstrating that this strategy offers perspectives for humanizing the N‐glycosylation of the Chlamydomonas‐made biologics. |
doi_str_mv | 10.1111/pbi.14424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11500980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119060002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3334-64fd54110d6c26aa3f912290ea782c2c5e71e3bbb3969e2594719cee603d37183</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhSNERUthwQugSGxgMa3_Yscr1I4orTQCFrC2HOdm4iqxB9spyo5H4Bl5EjyddgqV8Ma-9nfOtX2K4hVGJziP001jTzBjhD0pjjDjYiF4RZ7u14wdFs9jvEaIYF7xZ8UhrSWvOSZHhb-wDn7__JUmZ926TD2Un3K5Hmbj4zzoZL0rfVcGMH5srNMulf00aldCmFMf_MZbSNaVU9zql_2gx7n1o3c6ZpF1vQ5tsrYcp5S18UVx0Okhwsu7-bj4dvHh6_Jysfr88Wp5tloYSilbcNa1FcMYtdwQrjXtJCZEItCiJoaYCgQG2jQNlVwCqSQTWBoAjmhLBa7pcfF-57uZmhFaAy4FPahNsKMOs_Laqn9PnO3V2t8ojCuEZI2yw7udQ_9Id3m2Uts9xDgVVNY3OLNv77oF_32CmNRoo4Fh0A78FBVFgpNacCEz-uYReu2n4PJfKIqxRBzlmB6am-BjDNDtb4CR2maucubqNvPMvv77qXvyPuQMnO6AH3aA-f9O6sv51c7yDyD_uS8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119060002</pqid></control><display><type>article</type><title>Fine‐tuning the N‐glycosylation of recombinant human erythropoietin using Chlamydomonas reinhardtii mutants</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Leprovost, S. ; Plasson, C. ; Balieu, J. ; Walet‐Balieu, M‐L. ; Lerouge, P. ; Bardor, M. ; Mathieu‐Rivet, E.</creator><creatorcontrib>Leprovost, S. ; Plasson, C. ; Balieu, J. ; Walet‐Balieu, M‐L. ; Lerouge, P. ; Bardor, M. ; Mathieu‐Rivet, E.</creatorcontrib><description>Summary
Microalgae are considered as attractive expression systems for the production of biologics. As photosynthetic unicellular organisms, they do not require costly and complex media for growing and are able to secrete proteins and perform protein glycosylation. Some biologics have been successfully produced in the green microalgae Chlamydomonas reinhardtii. However, post‐translational modifications like glycosylation of these Chlamydomonas‐made biologics have poorly been investigated so far. Therefore, in this study, we report on the first structural investigation of glycans linked to human erythropoietin (hEPO) expressed in a wild‐type C. reinhardtii strain and mutants impaired in key Golgi glycosyltransferases. The glycoproteomic analysis of recombinant hEPO (rhEPO) expressed in the wild‐type strain demonstrated that the three N‐glycosylation sites are 100% glycosylated with mature N‐glycans containing four to five mannose residues and carrying core xylose, core fucose and O‐methyl groups. Moreover, expression in C. reinhardtii insertional mutants defective in xylosyltransferases A and B and fucosyltransferase resulted in drastic decreases of core xylosylation and core fucosylation of glycans N‐linked to the rhEPOs, thus demonstrating that this strategy offers perspectives for humanizing the N‐glycosylation of the Chlamydomonas‐made biologics.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.14424</identifier><identifier>PMID: 38968612</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Algae ; Aquatic microorganisms ; Biological products ; biologics ; Biopharmaceuticals ; Chlamydomonas ; Chlamydomonas reinhardtii ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; Chromatography ; Complex media ; Erythropoietin ; Erythropoietin - genetics ; Erythropoietin - metabolism ; glycoengineering ; Glycosylation ; Golgi apparatus ; Humans ; Investigations ; Life Sciences ; Mannose ; Microalgae ; Molecular weight ; Mutants ; Mutation - genetics ; Peptides ; Polysaccharides ; Polysaccharides - metabolism ; Proteins ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Strain analysis</subject><ispartof>Plant biotechnology journal, 2024-11, Vol.22 (11), p.3018-3027</ispartof><rights>2024 The Author(s). published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3334-64fd54110d6c26aa3f912290ea782c2c5e71e3bbb3969e2594719cee603d37183</cites><orcidid>0000-0002-3377-6169 ; 0000-0002-0966-903X ; 0000-0002-1031-1916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.14424$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.14424$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38968612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04637398$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leprovost, S.</creatorcontrib><creatorcontrib>Plasson, C.</creatorcontrib><creatorcontrib>Balieu, J.</creatorcontrib><creatorcontrib>Walet‐Balieu, M‐L.</creatorcontrib><creatorcontrib>Lerouge, P.</creatorcontrib><creatorcontrib>Bardor, M.</creatorcontrib><creatorcontrib>Mathieu‐Rivet, E.</creatorcontrib><title>Fine‐tuning the N‐glycosylation of recombinant human erythropoietin using Chlamydomonas reinhardtii mutants</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Microalgae are considered as attractive expression systems for the production of biologics. As photosynthetic unicellular organisms, they do not require costly and complex media for growing and are able to secrete proteins and perform protein glycosylation. Some biologics have been successfully produced in the green microalgae Chlamydomonas reinhardtii. However, post‐translational modifications like glycosylation of these Chlamydomonas‐made biologics have poorly been investigated so far. Therefore, in this study, we report on the first structural investigation of glycans linked to human erythropoietin (hEPO) expressed in a wild‐type C. reinhardtii strain and mutants impaired in key Golgi glycosyltransferases. The glycoproteomic analysis of recombinant hEPO (rhEPO) expressed in the wild‐type strain demonstrated that the three N‐glycosylation sites are 100% glycosylated with mature N‐glycans containing four to five mannose residues and carrying core xylose, core fucose and O‐methyl groups. Moreover, expression in C. reinhardtii insertional mutants defective in xylosyltransferases A and B and fucosyltransferase resulted in drastic decreases of core xylosylation and core fucosylation of glycans N‐linked to the rhEPOs, thus demonstrating that this strategy offers perspectives for humanizing the N‐glycosylation of the Chlamydomonas‐made biologics.</description><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Biological products</subject><subject>biologics</subject><subject>Biopharmaceuticals</subject><subject>Chlamydomonas</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Chromatography</subject><subject>Complex media</subject><subject>Erythropoietin</subject><subject>Erythropoietin - genetics</subject><subject>Erythropoietin - metabolism</subject><subject>glycoengineering</subject><subject>Glycosylation</subject><subject>Golgi apparatus</subject><subject>Humans</subject><subject>Investigations</subject><subject>Life Sciences</subject><subject>Mannose</subject><subject>Microalgae</subject><subject>Molecular weight</subject><subject>Mutants</subject><subject>Mutation - genetics</subject><subject>Peptides</subject><subject>Polysaccharides</subject><subject>Polysaccharides - metabolism</subject><subject>Proteins</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Strain analysis</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1DAUhSNERUthwQugSGxgMa3_Yscr1I4orTQCFrC2HOdm4iqxB9spyo5H4Bl5EjyddgqV8Ma-9nfOtX2K4hVGJziP001jTzBjhD0pjjDjYiF4RZ7u14wdFs9jvEaIYF7xZ8UhrSWvOSZHhb-wDn7__JUmZ926TD2Un3K5Hmbj4zzoZL0rfVcGMH5srNMulf00aldCmFMf_MZbSNaVU9zql_2gx7n1o3c6ZpF1vQ5tsrYcp5S18UVx0Okhwsu7-bj4dvHh6_Jysfr88Wp5tloYSilbcNa1FcMYtdwQrjXtJCZEItCiJoaYCgQG2jQNlVwCqSQTWBoAjmhLBa7pcfF-57uZmhFaAy4FPahNsKMOs_Laqn9PnO3V2t8ojCuEZI2yw7udQ_9Id3m2Uts9xDgVVNY3OLNv77oF_32CmNRoo4Fh0A78FBVFgpNacCEz-uYReu2n4PJfKIqxRBzlmB6am-BjDNDtb4CR2maucubqNvPMvv77qXvyPuQMnO6AH3aA-f9O6sv51c7yDyD_uS8</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Leprovost, S.</creator><creator>Plasson, C.</creator><creator>Balieu, J.</creator><creator>Walet‐Balieu, M‐L.</creator><creator>Lerouge, P.</creator><creator>Bardor, M.</creator><creator>Mathieu‐Rivet, E.</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3377-6169</orcidid><orcidid>https://orcid.org/0000-0002-0966-903X</orcidid><orcidid>https://orcid.org/0000-0002-1031-1916</orcidid></search><sort><creationdate>202411</creationdate><title>Fine‐tuning the N‐glycosylation of recombinant human erythropoietin using Chlamydomonas reinhardtii mutants</title><author>Leprovost, S. ; Plasson, C. ; Balieu, J. ; Walet‐Balieu, M‐L. ; Lerouge, P. ; Bardor, M. ; Mathieu‐Rivet, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3334-64fd54110d6c26aa3f912290ea782c2c5e71e3bbb3969e2594719cee603d37183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Biological products</topic><topic>biologics</topic><topic>Biopharmaceuticals</topic><topic>Chlamydomonas</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Chromatography</topic><topic>Complex media</topic><topic>Erythropoietin</topic><topic>Erythropoietin - genetics</topic><topic>Erythropoietin - metabolism</topic><topic>glycoengineering</topic><topic>Glycosylation</topic><topic>Golgi apparatus</topic><topic>Humans</topic><topic>Investigations</topic><topic>Life Sciences</topic><topic>Mannose</topic><topic>Microalgae</topic><topic>Molecular weight</topic><topic>Mutants</topic><topic>Mutation - genetics</topic><topic>Peptides</topic><topic>Polysaccharides</topic><topic>Polysaccharides - metabolism</topic><topic>Proteins</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Strain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leprovost, S.</creatorcontrib><creatorcontrib>Plasson, C.</creatorcontrib><creatorcontrib>Balieu, J.</creatorcontrib><creatorcontrib>Walet‐Balieu, M‐L.</creatorcontrib><creatorcontrib>Lerouge, P.</creatorcontrib><creatorcontrib>Bardor, M.</creatorcontrib><creatorcontrib>Mathieu‐Rivet, E.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leprovost, S.</au><au>Plasson, C.</au><au>Balieu, J.</au><au>Walet‐Balieu, M‐L.</au><au>Lerouge, P.</au><au>Bardor, M.</au><au>Mathieu‐Rivet, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine‐tuning the N‐glycosylation of recombinant human erythropoietin using Chlamydomonas reinhardtii mutants</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2024-11</date><risdate>2024</risdate><volume>22</volume><issue>11</issue><spage>3018</spage><epage>3027</epage><pages>3018-3027</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Summary
Microalgae are considered as attractive expression systems for the production of biologics. As photosynthetic unicellular organisms, they do not require costly and complex media for growing and are able to secrete proteins and perform protein glycosylation. Some biologics have been successfully produced in the green microalgae Chlamydomonas reinhardtii. However, post‐translational modifications like glycosylation of these Chlamydomonas‐made biologics have poorly been investigated so far. Therefore, in this study, we report on the first structural investigation of glycans linked to human erythropoietin (hEPO) expressed in a wild‐type C. reinhardtii strain and mutants impaired in key Golgi glycosyltransferases. The glycoproteomic analysis of recombinant hEPO (rhEPO) expressed in the wild‐type strain demonstrated that the three N‐glycosylation sites are 100% glycosylated with mature N‐glycans containing four to five mannose residues and carrying core xylose, core fucose and O‐methyl groups. Moreover, expression in C. reinhardtii insertional mutants defective in xylosyltransferases A and B and fucosyltransferase resulted in drastic decreases of core xylosylation and core fucosylation of glycans N‐linked to the rhEPOs, thus demonstrating that this strategy offers perspectives for humanizing the N‐glycosylation of the Chlamydomonas‐made biologics.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>38968612</pmid><doi>10.1111/pbi.14424</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3377-6169</orcidid><orcidid>https://orcid.org/0000-0002-0966-903X</orcidid><orcidid>https://orcid.org/0000-0002-1031-1916</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2024-11, Vol.22 (11), p.3018-3027 |
issn | 1467-7644 1467-7652 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11500980 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Algae Aquatic microorganisms Biological products biologics Biopharmaceuticals Chlamydomonas Chlamydomonas reinhardtii Chlamydomonas reinhardtii - genetics Chlamydomonas reinhardtii - metabolism Chromatography Complex media Erythropoietin Erythropoietin - genetics Erythropoietin - metabolism glycoengineering Glycosylation Golgi apparatus Humans Investigations Life Sciences Mannose Microalgae Molecular weight Mutants Mutation - genetics Peptides Polysaccharides Polysaccharides - metabolism Proteins Recombinant Proteins - genetics Recombinant Proteins - metabolism Strain analysis |
title | Fine‐tuning the N‐glycosylation of recombinant human erythropoietin using Chlamydomonas reinhardtii mutants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine%E2%80%90tuning%20the%20N%E2%80%90glycosylation%20of%20recombinant%20human%20erythropoietin%20using%20Chlamydomonas%20reinhardtii%20mutants&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Leprovost,%20S.&rft.date=2024-11&rft.volume=22&rft.issue=11&rft.spage=3018&rft.epage=3027&rft.pages=3018-3027&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.14424&rft_dat=%3Cproquest_pubme%3E3119060002%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119060002&rft_id=info:pmid/38968612&rfr_iscdi=true |